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Two main approaches are usually used for stability and control of
infinite-dimensional systems:

1 the analysis and control of the abstract infinite-dimensional system
(e.g. in the Hilbert space) with the corresponding conclusions for
specific systems;

2 the direct approach to a specific system.

In this talk both approaches to Lyapunov-based analysis will be
presented:

1 the Linear Operator Inequalities (LOIs) for the stability of linear
time-delay systems in a Hilbert space.
[Fridman & Orlov, Aut09a]
Thanks to J.-P. RICHARD for our visits to Ecole Centrale de Lille.

2 the direct Lyapunov approach to analysis of 1-d wave eq.
[Fridman & Orlov, Aut09b], [Fridman, S. Mondie, B. Saldivar ,
IMA J.]
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Delays may be a source of instability. However, they may have also
a stabilizing effect.

In the case of distributed parameter systems, arbitrarily small delays
in the feedback may destabilize the system [Datko, SICON 88],
[Logemann et al., SICON 96], [Nicaise & Pignotti, SICON 06].

Thus, the wave eq. non-robust w.r.t. delay [Wang, Guo & Krstic,
SICON 11]:

ztt(ξ, t) = zξξ(ξ, t), ξ ∈ (0, 1),
z(0, t) = 0, zξ(1, t) = kzt(1, t − h)

is stable for h = 0 and k = 1 (all solutions are zero for t ≥ 2),
unstable for all small enough h and k = 1 [Datko, TAC 97]
stable for h = 2 iff k ∈ (0, 1),
unstable for arbitrary small perturbations of h = 2,
for h = 2, 4, 6, 8 (even multiples of the wave propagation) stable for
some k > 0,
for h = 1, 3, 5, 0.5 unstable ∀k.
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The stability analysis of PDEs with delay is essentially more
complicated than of ODEs.

There are only a few works on Lyapunov-based technique for PDEs
with delay. The 2nd Lyapunov method was extended to abstract
nonlinear time-delay systems in the Banach spaces in Wang (1994a,
JMAA) and applied to scalar heat and scalar wave equations with
constant delays and with the Dirichlet boundary conditions in Wang
(1994b, JMAA), Wang(2006, JMAA).

Stability and instability conditions for wave delay equations were
found in (Nicaise & Pignotti, SIAM 2006).
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In (E. Fridman & Y. Orlov, Aut 09) exp. stability of general
distributed parameter systems are derived for linear systems, where a
bounded operator acts on the delayed state. The system delay is
admitted to be unknown and time-varying.

Sufficient exp. stability conditions are derived in the form of Linear
Operator Inequalities (LOIs), where the decision variables are
operators in the Hilbert space.
General methods for solving LOI have not been developed yet. Some
finite dimensional approximations were considered in Ikeda, Azuma
& Uchida (2001).

Being applied to a heat/wave equation these conditions are
represented in terms of standard finite-dimensional LMIs that
guarantee the stability of the 1-st/2-nd order delay-differential eqs.
This reduction of LOIs to finite-dimensional LMIs is tight: the
stability of the latter delay-differential eqs is necessary for the
stability of the heat/wave eqs.
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Problem Statement

ẋ(t) = Ax(t) + A1x(t − τ(t)), t ≥ t0 (1)

where x(t) ∈ H, H is a Hilbert space,
delay τ(t) is a piecewise continuous function

inf
t

τ(t) > 0, sup
t

τ(t) ≤ h, h > 0 (2)

A1 is a linear bounded operator,
A is an infinitesimal operator, generating a strongly continuous
semigroup T(t), the domain D(A) is dense in H.

Throughout, solutions of such a system are defined in the
Caratheodory sense: (1) is required to hold almost everywhere.

Let the initial conditions xt0 = ϕ(θ), θ ∈ [−h, 0], φ ∈ W be given in
the space W = C([−h, 0],D(A))∩ C1([−h, 0],H).
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Let the initial conditions

xt0
∆
= x(t0 + θ) = ϕ(θ), θ ∈ [−h, 0], φ ∈ W

be given in the space W = C([−h, 0],D(A))∩ C1([−h, 0],H).

Under the assumption

inf
t

τ(t) = h0 > 0, sup
t

τ(t) ≤ h, h > 0 (3)

we have τ(t) ∈ [h0, h].
The above initial-value problem is well-posed on [t0, ∞) and its
solutions can be found as mild solutions of

x(t) = T(t − t0)x(t0)

+
∫ t

t0
T(t − s)A1x(s − τ(s))ds, t ≥ t0.

(4)
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In this talk we will consider 2 main examples:
1) heat ( parabolic eq); 2) wave (hyperbolic eq).

Example 1: heat eq.

zt(ξ, t) = azξξ(ξ, t)− a1z(ξ, t − τ(t)), t ≥ t0, 0 ≤ ξ ≤ π (5)

with constants a > 0 and a1 and with the Dirichlet b. c.

z(0, t) = z(π, t) = 0, t ≥ t0. (6)

a is the heat conduction coefficient,
a1 is the coefficient of the heat exchange with the surroundings
z(ξ, t) is the temperature of the rod
The above system describes the propagation of heat in a
homogeneous 1-d rod with a fixed temperature at the ends in the
case of the delayed (possibly, due to actuation) heat exchange.
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Heat eq. can be rewritten as

ẋ(t) = Ax(t) + A1x(t − τ(t)), t ≥ t0

H = L2(0, π), A = a ∂2

∂ξ2 with the dense domain

D(
∂2

∂ξ2
) = {z ∈ W2,2([0, π], R) : z(0) = z(π) = 0},

and with the bounded operator A1 = −a1.

A generates a strongly continuous semigroup (see, e.g., Curtain
& Zwart (1995) for details).
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Example 2

:

Wave equation

ztt(ξ, t) = azξξ − µ0zt(ξ, t)− a0z(ξ, t)
−a1z(ξ, t − τ(t)), t ≥ 0, 0 ≤ ξ ≤ π,
z(0, t) = z(π, t) = 0, t ≥ t0.

(7)

Eqs (7) describe the oscillations of a homogeneous string with
fixed ends in the case of the delayed stiffness restoration.

Introduce the operators

A =

[

0 1

a ∂2

∂ξ2 −a0 −µ0

]

, A1 =

[

0 0
−a1 0

]

D(
∂2

∂ξ2
) = {z ∈ W2,2([0, π], R) : z(0) = z(π) = 0},
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Then (7) can be represented as

ẋ(t) = Ax(t) + A1x(t − τ(t)), t ≥ t0

in H = L2(0, π)× L2(0, π) with the infinitesimal operator A,

possessing the domain D(A) = D( ∂2

∂ξ2 )× L2(0, π) and generating a

strongly continuous semigroup (see, e.g., Curtain & Zwart (1995)).
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Our aim is to derive exp. stability criteria for (1), (2). The stability
concept under study is based on the initial data norm in the space

W = C([−h, 0],D(A))∩ C1([−h, 0],H)

defined as
‖φ‖W = |Aφ(0)|+ ‖φ‖C1([−h,0],H) (8)

Suppose x(t, t0, φ), t ≥ t0 denotes a solution of (1) with xt0 = φ.
System (1) is said to be exponentially stable with a decay rate δ > 0 if
∃K ≥ 1:

|x(t, t0, φ)|2 ≤ Ke−2δ(t−t0)‖φ‖2
W ∀t ≥ t0. (9)
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

Given a continuous functional V : R × W × C([−h, 0],H) → R,
V̇ along (1) is defined as follows:

V̇(t,φ,φ̇) = lim sups→0+
1
s [V(t+s, xt+s(t,φ), ẋt+s(t, φ))− V(t, φ, φ̇)].

Lemma Let ∃δ, β, γ and a continuous functional

V : R ×W × C([−h, 0],H) → R

such that the function V̄(t) = V(t, xt, ẋt) is absolutely continuous
for xt, satisfying (1), and

β|φ(0)|2 ≤ V(t, φ, φ̇) ≤ γ‖φ‖2
W ,

V̇(t, φ, φ̇) + 2δV(t, φ, φ̇) ≤ 0.
(10)

Then (1) is exp. stable with the decay rate δ and with K = γ
β .
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

Notation:
Given a linear operator Φ : H → H with a dense domain D(Φ) ⊂ H,
the notation Φ

∗ stands for the adjoint operator. Such an operator Φ is
strictly positive definite, i.e., Φ > 0, iff it is self-adjoint, i.e. Φ = Φ

∗ and
∃β > 0 such that

〈x, Φx〉 ≥ β〈x, x〉, ∀x ∈ D(Φ)

Φ ≥ 0 means that 〈x, Φx〉 ≥ 0 for all x ∈ D(Φ).
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

In a Hilbert space D(A), consider

V(t, xt,ẋt) = 〈x(t), Px(t)〉+
∫ t

t−h e2δ(s−t)〈x(s), Sx(s)〉ds

+h
∫ 0
−h

∫ t
t+θ e2δ(s−t)〈ẋ(s), Rẋ(s)〉dsdθ +

∫ t
t−τ(t) e2δ(s−t)〈x(s), Qx(s)〉ds

P : D(A) → H is a linear operator, P > 0 ,
R, Q, S ∈ L(H), R, Q, S ≥ 0
∀x ∈ D(A) and some positive γP, γQ, γS, γR

〈x, Px〉 ≤ γP[〈x, x〉+ 〈Ax, Ax〉], 〈x, Qx〉 ≤ γQ〈x, x〉,
〈x, Rx〉 ≤ γR〈x, x〉, 〈x, Sx〉 ≤ γS〈x, x〉

(11)

By using Cauchy-Schwartz (Jensen’s) inequality, we obtain conditions
in 2 forms:
1) by substituting the right side of (1) for ẋ(t);
2) by using descriptor approach (Fridman SCL 2001):
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

Theorem 1 (1) is exp. stable with the decay rate δ if LOI is feasible

Φh =

[

Φ11 0 PA1

0 0 0
A∗

1 P 0 0

]

+ h2

[

A∗RA 0 A∗RA1

0 0 0
A∗

1 RA 0 A∗
1 RA1

]

−e−2δh

[

R 0 −R
0 (S + R) −R
−R −R 2R+(1− d)Q

]

≤ 0,

where Φh : D(A)×D(A)×D(A) → H×H×H and where

Φ11 = A∗P + PA + 2δP + Q + S. (12)

Differently from the finite dimensional case, the feasibility of the strict
LOIs for h = 0 (or δ = 0) does not necessarily imply the feasibility of
these LOIs for small enough h (δ) because h2 (δ) is multiplied by the
operator, which may be unbounded.
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

Theorem 1 gives delay-dependent conditions (h-dependent) even for
δ → 0. For S = R = 0 we obtain the following ”quasi
delay-independent” conditions, which coincide for ODE with (Mondie &
Kharitonov, TAC 2005):

Corollary Given δ > 0, (1) is exp. stable with the decay rate δ for all
delays with τ̇(t) ≤ d < 1 if ∃ P > 0 and Q ≥ 0 subject to (11) such that
the LOI

[

(A+ δ)∗P + P(A + δ)+Q PA1

A∗
1 P −(1 − d)Qe−2δh

]

≤ 0 (13)

holds in D(A)×D(A) → H×H. The inequality (9) is satisfied with
K = max{γP, hγQ}/β.
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

It may be difficult to verify the feasibility of LOI 1, if the operator that
multiplies h2 (and depends on A) in Φh is unbounded. To avoid
this, we will derive the 2-nd form of LOI by the descriptor method
(Fridman, SCL 2001), where the right-hand sides of the expressions

0 = 2〈x(t), P∗
2 [Ax(t) + A1x(t − τ(t))− ẋ(t)]〉,

0 = 2〈ẋ(t), P∗
3 [Ax(t) + A1x(t − τ(t))− ẋ(t)]〉

(14)

with some P2, P3 ∈ L(H) are added into the right-hand side of V̇.
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Linear Operator Inequalities for Exp. Stability in a Hilbert Space

LOI 2 via descriptor method





Φd11 Φd12 0 P∗
2 A1 + Re−2δh

∗ Φd22 0 P∗
3 A1

∗ ∗ −(S+ R)e−2δh Re−2δh

∗ ∗ ∗ −[2R + (1 − d)Q]e−2δh





≤ 0

(15)

holds, where

Φd11 = A∗P2 + P∗
2 A + 2δP + Q + S − Re−2δh,

Φd12 = P − P∗
2 + A∗P3,

Φd22 = −P3 − P∗
3 + h2R.

(16)
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LMIs for the Delay Heat Equation

zt(ξ, t) = azξξ(ξ, t)− a0z(ξ, t)− a1z(ξ, t − τ(t)),
t ≥ t0, 0 ≤ ξ ≤ π

(17)

with constant a > 0 , a0, a1 and with the Dirichlet boundary conditions

z(0, t) = z(π, t) = 0, t ≥ t0. (18)

Here we apply the descriptor method LOIs. The boundary-value
problem (17), (18) can be rewritten as (1) in the Hilbert space

H = L2(0, π) with A = a ∂2

∂ξ2 − a0 with the dense domain

D(
∂2

∂ξ2
) = {z ∈ W2,2([0, π], R) : z(0) = z(π) = 0}, (19)

and with the bounded operator A1 = −a1.
A generates a strongly continuous semigroup
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LMIs for the Delay Heat Equation

Delay-independent conditions are derived by using

V = p
∫ π

0 z2(ξ, t)dξ + q
∫ t

t−τ(t)

∫ π
0 e2δ(s−t)z2(ξ, s)dξds (20)

with some constants p > 0 and q > 0. Then P = p, Q = q.
Integrating by parts and taking into account boundary conditions, we find

〈x, (A∗P + PA)x〉 = 2a
∫ π

0 pzzξξdξ = −2a
∫ π

0 pz2
ξdξ ≤ −2a

∫ π
0 pz2dξ

for x ∈ D(A), where the last inequality follows from the
Wirtinger’s Inequality [Hardy et al., 88]: Let z ∈ W1,2([a, b], R) be a
scalar function with z(a) = z(b) = 0. Then

∫ b

a
z2(ξ)dξ ≤

(b − a)2

π2

∫ b

a
(z′(ξ))2dξ. (21)
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LMIs for the Delay Heat Equation

We thus obtain that the LOI is satisfied provided that the following LMI

[

q − 2(a + a0)p −a1 p

−a1 p −(1 − d)qe−2δh

]

< 0 (22)

is feasible.
LMI (22) with δ = 0 is feasible iff a + a0 > 0, a2

1
< (a + a0)2(1 − d).
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LMIs for the Delay Heat Equation

Delay-Dependent Conditions
Choose the LKF of the form

V(t, zt, zt
s) = (p1 − p3a)

∫ π
0 z2(ξ, t)dξ + p3a

∫ π
0 z2

ξ(ξ, t)dξ

+
∫ π

0

[

r
∫ 0
−h

∫ t
t+θ e2δ(s−t)z2

s (ξ, s)dsdθ

+s
∫ t

t−h e2δ(s−t)z2(ξ, s)ds + q
∫ t

t−τ(t) e2δ(s−t)z2(ξ, s)ds
]

dξ

with p1 > 0, p3 > 0, s > 0, r > 0 and q ≥ 0.
Then the operators in LOI take the form

P = −p3(a ∂2

∂ξ2 + a) + p1, R = r, Q = q, S = s,

P3 = p3, P2 = p2 > 0, p2 − δp3 ≥ 0
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LMIs for the Delay Heat Equation

Integrating by parts and applying Wirtinger’s Inequality

∫ b

a
z2(ξ)dξ ≤

(b − a)2

π2

∫ b

a
(z′(ξ))2dξ (23)

we show that P > 0 and that the LOI of Th.2 is feasible if the following
LMI is feasible









φ11 φ12 0 φ14

∗ −2p3 + h2r 0 −p3a1

∗ ∗ −(s + r)e−2δh re−2δh

∗ ∗ ∗ φ44









<0,

φ11 = −2(a + a0)p2 + 2δp1 + q + s − re−2δh,

φ12 = p1 − p2 − (a + a0)p3, φ14 = −p2a1 + re−2δh,

φ44 = −[2r+(1− d)q]e−2δh
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LMIs for the Delay Heat Equation

Remark

The same LMIs guarantee the exp. stability of the scalar equation

ẏ(t) + (a + a0)y(t) + a1y(t − τ(t)) = 0 (24)

Eq. (24) corresponds to the first modal dynamics (with k = 1) in the
modal representation of the Dirichlet b. v. problem for the heat equation

yk(t) + (a + a0)k
2yk(t) + a1yk(t − τ(t)) = 0,

k = 1, 2, . . . projected on the eigenfunctions of the operator ∂2

∂ξ2 ( this

operator has eigenvalues −k2).
The stability of the heat eq. implies the stability of ODE (24).
Thus the reduction of infinite-dimensional LOI to finite-dimensional LMIs
is tight: the stability of (24) is necessary for the stability of the heat eq.
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LMIs for the Delay Heat Equation

Remark

The above LOIs (LMIs) are affine in the system operators
(coefficients). Consider now the systems under question with the
uncertain operators (coefficients) from the uncertain polytope, given
by M vertices. By the arguments of (Boyd et al. 1994), the
uncertain systems are exp. stable if the corresponding LOIs (LMIs)
in the vertices are feasible.

Example Consider the controlled heat eq.

zt(ξ, t) = zξξ(ξ, t) + rz(ξ, t) + u,
z(0, t) = z(l, t) = 0,

(25)

where ξ ∈ (0, l), t > 0 and where r is uncertain parameter satisfying
|r| ≤ β.
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LMIs for the Delay Heat Equation

It was shown in (Rebiai & Zinober, IJC 1993) that for l = 1

u = −γz(ξ, t), γ > ( β
2π )

2 as. stabilizes (25).

By our method u = −γz(ξ, t), γ > β − π2 Since β − π2 ≤ ( β
2π )

2,
our method guarantees exp. stabilization via a lower gain.

Consider next l = π, β = 0.1 and the feedback u = −z(ξ, t − τ(t))
with the uncertain delay τ(t) ∈ [0, h], τ̇ ≤ d < 1
This is a polytopic system reached by choosing r = ±0.1. We
verify the feasibility of delay-dependent LMIs in 2 vertices: r = ±0.1.
We use LMI toolbox of Matlab and find the maximum values of h
for which the system remains as. stable:

d = 0.5, h = 2.04; unknown d, h = 1.34.

The latter results correspond also to the stability of

ẏ = (−1 + r)y(t)− y(t − τ(t)), |r| ≤ 0.1
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LMIs for the Delay Wave Equation

Consider the wave equation

ztt(ξ, t) = azξξ − µ0zt(ξ, t)− µ1zt(ξ, t − τ(t))
−a0z(ξ, t)− a1z(ξ, t − τ(t)), t ≥ 0, 0 ≤ ξ ≤ π

(26)

with the Dirichlet boundary condition (18).
Introduce the operators

A =

[

0 1

a ∂2

∂ξ2 −a0 −µ0

]

, A1 =

[

0 0
−a1 −µ1

]

(27)

where the domain D( ∂2

∂ξ2 ) is determined by (19). Then (18), (26) can be

represented as (1) in the Hilbert space H = L2(0, π)× L2(0, π) with the
infinitesimal operator A, possessing the domain

D(A) = D( ∂2

∂ξ2 )× L2(0, π) and generating a strongly continuous

semigroup (see, e.g., Curtain & Zwart (1995)).
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LMIs for the Delay Wave Equation

Delay-Dependent Conds: µ1 = 0 We apply LOI of Theorem 1. Since the
delay appears only in u, we choose V as follows:

V = ap3

∫ π
0 z2

ξ(ξ, t)dξ +
∫ π

0 [z(ξ, t) zt(ξ, t)]P0

[

z(ξ, t)
zt(ξ, t)

]

dξ

+
∫ π

0

[

hr
∫ 0
−h

∫ t
t+θ z2

t (ξ, s)e2δ(s−t)dsdθ + s
∫ t

t−h z2(ξ, s)e2δ(s−t)ds

+q
∫ t

t−τ z2(ξ, s)e2δ(s−t)ds
]

dξ,

P0 =

[

p1 p2

p2 p3

]

, Pw =

[

ap3 + p1 p2

p2 p3

]

> 0.

where r > 0, s > 0, q ≥ 0. Then the operators P, Q, R in LOI are given
by

P =

[

−ap3
∂2

∂ξ2 + p1 p2

p2 p3

]

> 0, Q =

[

q 0
0 0

]

≥ 0,

R = diag{r, 0} ≥ 0, S = diag{s, 0} ≥ 0.
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LMIs for the Delay Wave Equation

Denote

Cδ =

[

δ 1
−a − a0 −µ0 + δ

]

. (28)

LOI is feasible if the following LMIs are satisfied:

p2 ≥ p3δ,




φw 0 Pw

[

0
−a1

]

+

[

re−2δh

0

]

∗ −(s+ r)e−2δh re−2δh

∗ ∗ −(2r + (1 − d)q)e−2δh



 < 0,
(29)

where
φw = CT

δ Pw + PwCδ + diag{q + s − re−2δh, h2r}.

The same LMIs appear to guarantee the stability of ODE with delay

˙̄z(t) = C0z̄(t) + A1z̄(t − τ(t)), z̄(t) ∈ R
2.

This ODE governs the first modal dynamics of the modal representation
of the Dirichlet boundary-value problem.
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LMIs for the Delay Wave Equation

Example

Consider the controlled wave equation

ztt(ξ, t) = 0.1zξξ(ξ, t)− 2zt(ξ, t) + u, (30)

with boundary condition (18),
t ≥ t0, 0 ≤ ξ ≤ π, 0 ≤ τ ≤ h, τ̇ ≤ d < 1.

Applying LMI to the open-loop system we find that (30) with u = 0
is exp. stable with the decay rate δ = 0.05.

Considering next a delayed feedback
u = −z(ξ, t − τ(t))

and verifying the LMI, we find that the closed-loop system is exp.
stable with a greater decay rate δ = 0.8 for all 0 ≤ τ(t) ≤ 0.31.
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LMIs for the Delay Wave Equation

Delay-Ind. Conditions are derived for µ1 6= 0.

Corollary from delay-ind. conds In a particular case where a = 1,
a0 = a1 = 0, the Dirichlet boundary-value problem for the wave eq.
is exp. stable for all τ̇ ≤ d < 1 if µ2

1 < (1 − d)µ2
0

Remark. The condition 0 ≤ µ1 < µ0 for the stability of the wave
eq. with constant delay and a = 1, a0 = a1 = 0 was obtained by
Nicaise & Pignotti (SIAM 2006), where it was shown that if
µ1 ≥ µ0, there exists a sequence of arbitrary small delays that
destabilize the system.
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Conclusions

Thanks to Jack Hale for encouragement on Partial Functional Dif. Eqs
and to Chris Byrnes for discussions on
Output Regulation for Distributed Parameter Systems with Delays

A general framework is given for exp. stability of linear distributed
parameter systems in a Hilbert space with a bounded operator
acting on the delayed state.

Stability conditions are derived in terms of LOIs in the Hilbert space.

In the case of a heat/wave scalar equation with the Dirichlet
boundary conditions, these LOIs are reduced to finite-dimensional
LMIs by applying new Lyapunov functionals.

The simplicity and the tightness of the results are the advantages of
the new method.

As it happened with LMIs in the finite dimensional case, LOIs are
expected to provide effective tools for robust control of distributed
parameter systems.
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Motivation: improved drilling towards Leviathan gas discovery

A sketch of a simplified drillstring system is shown on Fig. 1.
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Drilling system model: a 1-d wave equation

Drilling system model
N. Challamel, Rock destruction effect on the stability of a drilling
structure, Journal of sound and vibration, 233 (2), 235-254, 2000.

GJ

L2

∂2z

∂σ2
(σ, t)− I

∂2z

∂t2
(σ, t)− β

∂z

∂t
(σ, t) = 0, σ ∈ [0, 1],

z(0, t) = 0;
GJ
L

∂z
∂σ (1, t) + IB

∂2z
∂t2 (1, t) = −T′(Ω + θzt)

∂z
∂t (1, t) + w(t).

z(σ, t) is the angle of rotation,

T is the torque on the bit,

IB is a lumped inertia (the assembly at the bottom hole),

β ≥ 0 damping (viscous and structural),

I is the inertia, G is the shear modulus, J is the geometrical moment
of inertia.
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Drilling system model: a 1-d wave equation

The presence of a bounded additive noise signal w(t) is considered
at the bottom of the drillstring in order to account for external
disturbances and modeling errors

|w(t)| ≤ w, t ∈ (0, ∞).

We will study ultimate boundedness of the solution.
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Drilling system model: a 1-d wave equation

The initial conditions are:

z(σ, 0) = ζ(σ), zσ(σ, 0) = ζ̇(σ) ∈ L2(0, 1),
zt(σ, 0) = ζ

1
(σ) ∈ L2(0, 1).

(31)

When the damping and the lumped inertia are negligible ( β = IB = 0 )
the model reduces to:

∂2z

∂t2
(σ, t) = a

∂2z

∂σ2
(σ, t), σ ∈ [0, 1], t ≥ 0 (32)

z(0, t) = 0;
∂z

∂σ
(1, t) = −k

∂z

∂t
(1, t) + rw(t) (33)

where a = GJ
IL2 , k = LT′

GJ , r = L
GJ ∈ R.
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Ultimate boundedness

A differential-difference equation approach

The general solution of the unidimensional wave equation is:

z(σ, t) = φ(t + sσ) + ψ(t − sσ), t ≥ s,

where φ, ψ ∈ C1 and s =
√

1
a .

The boundary conditions can be rewritten as:

z(0, t) = φ(t) + ψ(t) = 0,

∂z(1, t)

∂σ
= sφ̇(t + s)− sψ̇(t − s) = −k[φ̇(t + s) + ψ̇(t − s)] + rw(t).
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Ultimate boundedness

A differential-difference equation approach
It follows from the above expressions that

φ(t) = −ψ(t), t ≥ 0.

We obtain the differential-difference equation for t ≥ s:

ψ̇(t + s) = −
(s − k)

(s + k)
ψ̇(t − s)−

r

(s + k)
w(t), s =

√

1

a

with the initial condition

ψ̇(t) = −0.5[ζ1(t/s) + ζ̇(t/s)/s], t ∈ [0, s],
ψ̇(−t) = 0.5[ζ1(t/s)− ζ̇(t/s)/s], t ∈ [0, s].
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Ultimate boundedness

A differential-difference equation approach

Notice that

∂z

∂σ
(σ, t) = sφ̇(t+ sσ)− sψ̇(t− sσ),

∂z

∂t
(σ, t) = φ̇(t+ sσ)+ ψ̇(t− sσ).

We now summarize the above results:

Lemma

The solution of the boundary-value problem (32), (33) is ultimately
bounded and for all initial conditions (31) it satisfies the inequalities

|zσ(1, t)| ≤ se−
λ
s t[|ζ1(ξ/s)|+

∣

∣ζ̇(ξ/s)
∣

∣ /s] +
2s |c1|

1 − e−λ
w̄, t ≥ 0,

|zt(1, t)| ≤ e−
λ
s t[|ζ1(ξ/s)|+

∣

∣ζ̇(ξ/s)
∣

∣ /s] +
2 |c1|

1 − e−λ
w̄ t ≥ 0.
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Ultimate boundedness

A wave equation analysis

Under the assumption that the lumped inertia is negligible (i.e. IB = 0)
the model reduces to:

ztt(σ, t) = azσσ(σ, t) + dzt(σ, t) t ≥ t0, 0 ≤ σ ≤ 1

with the boundary conditions:

z(0, t) = 0,
zσ(1, t) = −kzt(1, t) + rw(t), t ≥ 0,

where a = GJ
IL2 , d = −β

I , r = L
GJ and k = LT′

GJ with 0 < k0 ≤ k ≤ k1.

z(σ, 0) = ζ(σ), zσ(σ, 0) = ζ̇(σ) ∈ L2(0, 1),
zt(σ, 0) = ζ

1
(σ) ∈ L2(0, 1).
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Ultimate boundedness

A wave equation analysis

Outline of the proof.

We look for an energy function V such that:

Lemma (Fridman & Dambrine, 2008)

Assume that |w| ≤ w̄. Let V : [0, ∞) → R+ be an absolutely continuous
function. If there exists δ > 0, b > 0 such that the derivative of V
satisfies almost everywhere the inequality

d

dt
V + 2δV − bw2 ≤ 0,

then it follows that

V(t) ≤ e−2δ(t−t0)V(t0) + (1 − e−2δ(t−t0))
b

2δ
w̄2.
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Ultimate boundedness

A wave equation analysis

Consider the energy function

V(zσ(·,t),zt(·, t)) = p[
∫ 1

0 az2
σ(σ, t)dσ +

∫ 1
0 z2

t (σ, t)dσ]

+2χ
∫ 1

0 σzσ(σ, t)zt(σ, t)dσ

(Nicaise & Pignotti, 2006) with constants p > 0 and small enough χ.
Following LMI approach of (Fridman & Y. Orlov, Aut 09)

V(zξ(·,t),zt(·, t)) ≥
∫ 1

0 [zξ zt]

[

a1 p χξ
χξ p

]

[zξ zt]Tdξ

> ε
∫ 1

0 [z
2
ξ(ξ, t) + z2

t (ξ, t)]dξ
(34)

for some ε > 0. The latter inequality holds if

[

a1 p χξ
χξ p

]

> 0, ∀ξ ∈ [0, 1] ⇐

[

a1 p χ
χ p

]

> 0
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Ultimate boundedness

A wave equation analysis

d
dt V = 2p

∫ 1
0 azσ(σ, t)ztσ(σ, t)dσ + 2p

∫ 1
0 zt(σ, t)ztt(σ, t)dξ

+2χ d
dt

(

∫ 1
0 σztzσdσ

)

= 2p
∫ 1

0 [azσ(σ, t)ztσ(σ, t) + azt(σ, t)zσσ(σ, t)]dσ

+2pd
∫ 1

0 z2
t (σ, t)dσ+ 2χ d

dt

(

∫ 1
0 σztzσdσ

)

.

Integration by parts + boundary conditions ⇒

∫ 1
0 zt(σ, t)zσσ(σ, t)dσ = zt(σ, t)zσ(σ, t)|10 −

∫ 1
0 ztσ(σ, t)zσ(σ, t)dσ

= zt(1, t)(−kzt(1, t) + rw(t))−
∫ 1

0 ztσ(σ, t)zσ(σ, t)dσ.

d
dt

(

2
∫ 1

0 ξztzξdξ
)

= −
∫ 1

0 (z
2
t + az2

σ)dσ + z2
t (1, t)

+a[−kzt(1, t) + w(t)]2 + 2d
∫ 1

0 σzt(σ, t)zσdσ.
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Ultimate boundedness

We find

d

dt
V + 2δV − bw2 =

∫ 1

0
ϑT(σ, t)Ψϑ(σ, t)dσ ≤ 0

with
ϑT(σ, t) = [zt(1, t) zσ(σ, t) zt(σ, t), w(t)]

if

Ψ =

[

ψ1 0 0 −aχkr + apr
∗ ψ2 (2δ + d)χσ 0
∗ ∗ ψ3 0
∗ ∗ ∗ −b + χar2

]

< 0 ⇐ Ψ|σ=1 < 0

where
ψ1 = −2akp + (1 + ak2)χ,
ψ2 = −aχ + 2δap,
ψ3 = −χ + 2pd + 2δp.
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Ultimate boundedness

A wave equation analysis

Theorem

Given δ > 0, if ∃p > 0, χ > 0 such that

Ψ|σ=1,k=ki
< 0, i = 0, 1,

[

a1 p χ
χ p

]

> 0

then

∫ 1

0
[z2

σ(σ, t) + z2
t (σ, t)]dσ≤

α2

α1
e−2δ(t−t0)

∫ 1

0
[ζ̇(σ)2 +ζ1(σ)

2]dσ +
b

α12δ
w̄2

with

α1 = λmin

[

ap 0
0 p

]

, α2 = λmax

[

ap χ
χ p

]

.

is satisfied.
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Ultimate boundedness

A numerical example

For the parameter values given in (Challamel, 1999) and β = 0:

G = 79.3x109N/m2, I = 0.095Kg · m,

T = 3000N · m, J = 1.19x10−5m4,

L = 3145m,

Difference equation approach ⇒

|zσ(1, t)| ≤ 0.9979e−0.2006t[|ζ1(ξ/0.9979)|

+1.0021
∣

∣ζ̇(ξ/0.9979)
∣

∣] + 0.0033w̄.

|zt(1, t)| ≤ e−0.2006t[|ζ1(ξ/0.9979)|

+1.0021
∣

∣ζ̇(ξ/0.9979)
∣

∣] + 0.0033w̄.
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Ultimate boundedness

A numerical example: Wave equation approach

The wave equation approach leads to

Case 1 2 3 4 5
δ 0.08 0.06 0.04 0.01 0.0001
b 3.2521 1.0707 1.2145 1.5221 1.7951

For δ = 0.04

∫ 1

0
[z2

σ(σ, t)+ z2
t (σ, t)]dσ ≤1.1909e−0.08t

∫ 1

0
[ζ2

1(σ)+ζ̇2(σ)]dσ+ 11.9944w̄2.

The difference equation approach leads to an ultimate bound for the
main variable of interest, the angular velocity at the drill bottom zt(1, t),
while the wave equation model provides the bound on the energy
∫ 1

0 [z
2
σ(σ, t) + z2

t (σ, t)]dσ.
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Ultimate boundedness

Recent results
on Robust Stability and Control of Distributed Parameter Systems

Boundary value H∞ control of the heat/wave eqs
(with Y. Orlov, Aut09).
Thanks to J.-P. RICHARD for our visits to Ecole Centrale de Lille.

2-nd order evolution eqs with boundary tvr delays
(with S. Nicaise & J. Valein, SICON 10)
Thanks to M. DAMBRINE for my visits to Valenciennes Uni.

Sampled-data control of 1-d semilinear heat equation
under the discrete in space and in time measurements
(with A. Blighovsky, IFAC Congress 2011)
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Ultimate boundedness

CONCLUSIONS

Many important plants (flexible manipulators and heat transfer
processes) are governed by PDEs and described by uncertain models.

The existing results
[Bensoussan et al 1993], [Curtain & Zwart, 1995 ],
[Foias et al. 1996] , [van Keulen 1993]
on robust control of Distributed Parameter Systems (DPS) are
devoted to the linear case.

The LMI approach (Fridman & Orlov, Aut09a,b) is appropriate for
nonlinear distributed parameter models and provides the desired
system performance in spite of significant uncertainties.

As it happened with Time-Delay systems, LMIs are expected to
provide effective tools for robust control of Distributed Parameter
Systems.
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