

An Example of Modified Smith Predictor Design with QFT

Per-Olof Gutman

- The example a double integrator with uncertain gain and delay
- A straightforward lead-lag design using QFT
- The Modified Smith Predictor
- Loop shaping for (the plant + the Modified Smith Predictor)
- A successful design
- Discussion

The example – a double integrator plant with uncertain gain and delay

$$P(s) = \frac{k}{s^2} e^{-sh}$$

$$k \in [1, 10]$$
 $h \in [0, 1]$

Specification:

$$|S| = \left| \frac{1}{1 + PG} \right| \le 2$$

The example — a double integrator plant with uncertain gain and delay

$$P(s) = \frac{k}{s^2} e^{-sh}$$

$$k \in [1, 10]$$
 $h \in [0, 1]$

Specification:

$$|S| = \left| \frac{1}{1 + PG} \right| \le 2$$

Templates of the double integrator plant

The arbitrary nominal plant is chosen as

$$P_{nom}(s) = \frac{e^{-s}}{s^2}$$

Note: For a plant w/o uncertainty, and delay = h [sec],

$$max(\omega_c) = \frac{1}{h} [rad/s]$$

A straightforward lead-lag design

$$g304(s) = \frac{0.965(s+0.1)(s+0.3878)}{(s+0.4)(s+2.327)(s+10)}$$

A straightforward lead-lag design

$$g304(s) = \frac{0.965(s+0.1)(s+0.3878)}{(s+0.4)(s+2.327)(s+10)}$$

$$|S| = \left| \frac{1}{1 + PG} \right|$$

The Modified Smith Predictor

For the unstable plant

$$P(s) = \frac{k}{s^2} e^{-hs}$$

one may choose

$$\pi(s) = \frac{k_s}{s^2} \left(1 - h_s s + \frac{{h_s}^2 s^2}{2} - e^{-h_s s} \right)$$

where k_s , h_s are chosen as one of the possible values of k, h.

$$G(s) = \frac{C(s)}{1 + C(s)\pi(s)}$$

Loop shaping with MSP

$$G(s) = \frac{C(s)}{1 + C(s)\pi(s)}$$

While
$$PG = -1 = C(P + \pi) = -1$$
,

$$\left| \frac{1}{1 + \frac{CP}{1 + C\pi}} \right| \neq \left| \frac{1}{1 + C(P + \pi)} \right|$$

So, one should loop shape PG by changing factors of C within G, but that is not intuitive. So, let us try to loop shape $C(P+\pi)$ under the "specification"

$$\left|\frac{1}{1+C(P+\pi)}\right| \le 2$$

and see what happens ...

Bode Diagram of MSP

Note that for low frequencies, the gain of MSP is low and the gain of P is high, so for low frequencies it holds that $C(P + \pi) \approx CP$, and

$$\left| \frac{1}{1 + \frac{CP}{1 + C\pi}} \right| \approx \left| \frac{1}{1 + C(P + \pi)} \right|$$
 so there is

some hope that loop shaping $C(P+\pi)$ under the "specification"

$$\left|\frac{1}{1+C(P+\pi)}\right| \le 2$$

will yield something useful...

$$\pi(s) = \frac{k_s}{s^2} \left(1 - h_s s + \frac{h_s^2 s^2}{2} - e^{-h_s s} \right)$$
 with $k_s = h_s = 1$

$\mathbf{P}(\mathbf{s}) + \pi(\mathbf{s})$

Templates of $P(s) + \pi(s)$

TECHNION Is a local local local local Bounds for $C(P_{nom}(s) + \pi(s))$

TECHNION Bounds for $C(P_{nom}(s) + \pi(s))$

Design $C_4(P_{nom}(s) + \pi(s))$

Design $C_4(P_{nom}(s) + \pi(s))$

$$C_4(s)$$

$$C_4(s) = 0.011 \frac{\left(1 + \frac{s}{0.15}\right) \left(1 + \frac{2 \cdot 0.074s}{0.598} + \frac{s^2}{0.598^2}\right)}{\left(1 + \frac{s}{2.327}\right) \left(1 + \frac{s}{12}\right) \left(1 + \frac{2 \cdot 0.08s}{0.6} + \frac{s^2}{0.6^2}\right)}.$$

$$\frac{\left(1 + \frac{2 \cdot 0.06s}{0.69} + \frac{s^2}{0.69^2}\right) \left(1 + \frac{2 \cdot 0.6s}{1.9} + \frac{s^2}{1.9^2}\right)}{\left(1 + \frac{2 \cdot 0.09s}{0.725} + \frac{s^2}{0.725^2}\right) \left(1 + \frac{2 \cdot 1.2s}{11} + \frac{s^2}{11^2}\right)} \rightarrow$$

$$G_4(s) = \frac{C_4(s)}{1 + C_4(s)\pi(s)}$$

Bode diagram of $G_4(s)$

Result $G_4(s)P(s)$

Result $G_4(s)P(s)$

-50

Result $G_4(s)P(s)$

$|1+G_4(s)P(s)|$

odsrs frequency domain specification from didelay.spc

Discussion

- It was easier to loop shape with the MSP in parallel with the plant than with no MSP at all, and higher bandwidth was achieved
- It is more difficult to loop shape when the MSP is postulated to be inside the feedback of the controller, although that is the correct way to do it
- It was not tested how the choice of the MSP parameters influences the design process.