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Neutral time delay systems

A neutral system has the following form

d

dt

x(t) +
m∑
k=1

Hkx(t− τk)

 = A0x(t) +
p∑

j=1

Ajx(t− ϑj)

with time delays τk > 0, k = 1, . . .m, ϑj > 0, j = 1, . . . p, and
system matrices Hk ∈ Rn×n, k = 1, . . .m, Aj ∈ Rn×n, j = 0, . . . p

• Lossless transmission lines (Kolmanovskii and Nosov 1986)

• Partial element equivalent circuits (PEECs) (Bellen et al. 1999)

• Combustion systems (Murray et al. 1998)

• Controlled constrained manipulators (Niculescu and Brogliato 1999)

• Boundary controlled hyperbolic PDEs (Michiels et al. 2002)

• Implementation schemes of predictive controllers (Engelborghs et al. 2001)

• Control systems with derivative feedback in vibration suppression (Vyhĺıdal et al. 2009)



Difference equation

The associated difference equation

x(t) +
m∑
k=1

Hkx(t− τk) = 0

plays an important role when analyzing stability of
the neutral time delay system

Retarded time delay systems

If Hk = 0, k = 1, . . .m, the neutral system reduces to

d

dt
x(t) = A0x(t) +

p∑
j=1

Ajx(t− ϑj)

which is a retarded system, a more common type
of time delay system



Asymptotic stability

The neutral system is stable iff all the (infinitely many)

characteristic roots of the equation

det

λ
I +

m∑
k=1

Hke
−λτk

−A0 −
p∑

j=1

Aje
−λϑj

 = 0

lie in the open left half plane

Analogously, the associated difference equation is stable iff

all the (infinitely many) characteristic roots of the equation

det

I +
m∑
k=1

Hke
−λτk

 = 0

lie in the open left half plane



Spectral properties

Bellman and Cooke (1963) remarked that the spectrum of a

neutral system is composed of a finite number of asymptotic

root chains

Some of these chains can asymptotically match exponential curves

(in the same way as for retarded systems) for which <(λi)→ −∞
as |λi| → ∞

However, neutral equations may exhibit chains of characteristic

roots located in vertical strips of the complex plane, i.e.

α < <(λi) < β,α ∈ R, β ∈ R as |λi| → ∞



These neutral root chains arise from the fact that for large |λi|,
in the given vertical strip, the characteristic matrix function of

the difference equation in

det

λ
I +

m∑
k=1

Hke
−λτk

−A0 −
p∑

j=1

Aje
−λϑj

 = 0

is of predominant order of magnitude; roots of the neutral system

then tend to match roots of the difference equation

Due to this root matching, stability of the difference equation is

a necessary condition for stability of the neutral system

Obviously, the neutral system can be unstable with infinitely

many roots in the open right half plane (this can never happen

for retarded systems)



Example of a typical distribution of characteristic roots



Hypersensitivity to small changes in the delays

Hale and Verduyn Lunel (1993) noticed that the distribution of

the spectrum of a difference equation can be very sensitive to

small changes in the delays and can cause instability

Example: consider the scalar neutral system

d

dt

(
x(t)−

3

4
x(t− τ1) +

1

2
x(t− τ2)

)
= x(t) +

1

2
x(t− τ2)

with the associated difference equation

x(t)−
3

4
x(t− τ1) +

1

2
x(t− τ2) = 0

and let us analyze the spectrum of the difference equation and

neutral system as the first delay changes from τ1 = 1 to τ1 = 0.9

whereas the second delay remains fixed at τ2 = 2



Stability loss due to root crossings at high frequencies



The neutral system has infinitely many unstable roots



Strong stability

Although the difference equation can be stable for nominal

values of the delays, stability can be lost due to vanishingly

small changes in the delays

In order to deal with such stability hypersensitivity, the concept

of strong stability has been introduced by Hale and Verduyn

Lunel (2002):

The difference equation is strongly stable iff it is stable for the

nominal delay values and also for small changes in the delays



Strong stability

The delay difference equation

x(t) +
m∑
k=1

Hkx(t− τk) = 0

is strongly stable if and only if

γ0 := max
θ∈[0, 2π]m

rσ

 m∑
k=1

Hke
−iθk

 < 1

where rσ denotes the spectral radius, i.e. the maximum modulus

of the eigenvalues



Some well-known properties

1. Strong stability is delay independent

2. Stability of difference equation with rationally independent
delays implies strong stability, and vice versa

3. In the case of one delay (m = 1) it holds γ0 = rσ(H1)

4. In the case of a scalar equation (n = 1) it holds γ0 =
∑m
k=1 |Hk|

5. A sufficient, but as a rule conservative, condition for strong
stability is given by

m∑
k=1

‖Hk‖ < 1

where ‖.‖ denotes the maximum singular value of a matrix



Computational issues

By homogeneity, the expression of γ0 can be simplified to

γ0 = max
θ∈[0, 2π]m−1

rσ

m−1∑
k=1

Hke
−iθk +Hm



Finding γ0 can be formulated as the global optimization problem

of maximizing the spectral radius over [0, 2π]m−1

As rσ(θ) is in general nonconvex and nonsmooth, brute force

methods have been used so far (Michiels at al. 2005-2010)

With an N-point grid for each dimension, a lower bound on γ0

is obtained by solving Nm−1 times an n× n eigenvalue problem
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Strong stability as robust stability

Characteristic polynomial

p(z) = det(z0In +
m∑
k=1

zkHk)

homogeneous of degree n in m+ 1 variables z0, z1, . . . , zm

Difference equation

x(t) =
m∑
k=1

Hkx(t− τk)

strongly stable iff roots of univariate polynomial

z0 7→ p(z)

are in open unit disk for all zk = ejθk, θk ∈ [0,2π], k = 1, . . . ,m



Hermite’s stability criterion

Proposed by Charles Hermite (1854) much before

Routh and Hurwitz (1895)

Polynomial p(z) = p0 + p1z + · · ·+ pnzn has its roots in unit disk

iff Hermite matrix H(p) = ST1 (p)S1(p)− ST2 (p)S2(p) � 0 where

S1(p) =


pn pn−1 pn−2
0 pn pn−1
0 0 pn

. . .

 S2(p) =


p0 p1 p2
0 p0 p1
0 0 p0

. . .



Explicit Lyapunov matrix depending quadratically on p



Strong stability as trigonometric polynomial matrix positivity

Apply Hermite’s criterion to z0 7→ p(z)

H(z1, . . . , zm) � 0

for all zk = ejθk, θk ∈ [0,2π], k = 1, . . . ,m

In the sequel we propose to address this polynomial positivity

problem with a converging hierarchy of LMI problems
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Trigonometric polynomials

Denoted

h(z) =
∑
α
hαz

α

where α ∈ Nm is a multi-index such that

zα =
m∏
k=1

z
αk
k

and z ∈ Cm is a vector of complex indeterminates such that

z ∈ Tm with T = {z ∈ C : |z| = 1} i.e.

zk = ejθk, θk ∈ [0, 2π]



Positive trigonometric polynomials

Real trigonometric polynomials h(z) = h(z)∗ satisfy hα = h∗−α

Positivity problem:

hmin = min
z∈Tm

h(z)

Is hmin > 0 ?

In the sequel we propose to compute hmin

with converging hierarchies of:

• lower bounds via SDP

• upper bounds via EVP



Hierarchy of lower bounds via SDP

Express polynomial as a quadratic form

h(z) = bk(z)∗Xkbk(z)

where bk(z) is a vector basis of trigonometric polynomials of

degree up to k, and Xk is a Gram matrix

Putinar’s theorem (1993): h(z) > 0 iff there exists a finite integer

k = d and a matrix Xd � 0 satisfying the above relation



Hierarchy of lower bounds via SDP

Now defining

hk = sup h
s.t. h(z)− h = b∗k(z)Xkbk(z) Xk � 0

it follows that

hk ≤ hk+1

and

lim
k→∞

hk = hmin

Computing hk amounts to solving a semidefinite programming

(SDP = LMI) problem of a special type (Toeplitz sum-of-squares)



Hierarchy of upper bounds via EVP

By definition

hmin = min
µ

∫
Tm

h(z)dµ(z)

where the minimum is over all probability measures on Tm

Consider a trigonometric polynomial qk(z) = q∗kbk(z) of degree k

such that measure µk(dz) = q∗k(dz)qk(dz)ν(dz) is absolutely

continuous w.r.t. measure ν supported uniformly on Tm

Since Tm is compact there is a sequence {µk} such that

lim
k→∞

µk = arg min
µ

∫
Tm

h(z)dµ(z)



Hierarchy of upper bounds via EVP

Define

hk = min
µk

∫
Tm

h(z)dµk(z)

where the minimum is over probability measures with
polynomial densities of degree k on Tm

Then∫
Tm

h(z)dµk(z) = q∗k

(∫
Tm

h(z)bk(z)b∗k(z)dν(z)
)

qk = q∗kMk(hy)qk

where Mk(hy) is the localizing matrix (of order k of measure ν
w.r.t. polynomial h) linear in moments yα =

∫
Tm z

αdν(z)

Since µk is a probability measure∫
Tm

dµk(z) = q∗kMk(y)qk = 1



Hierarchy of upper bounds via EVP

Generalized eigenvalue problem

hk = minqk q∗kMk(hy)qk
s.t. q∗kMk(y)qk = 1

with given moment matrix Mk(y) � 0

and given localizing matrix Mk(hy) � 0

Optimal qk is a minimum eigenvector of pencil

z 7→ zMk(y)−Mk(hy)

and hk is the minimum eigenvalue



Polynomial matrices

We want to assess whether

H(z) =
∑
α
zαHα � 0

so the hierarchy of SDP problems reads

hk = sup h
s.t. H(z)− hI = (bk(z)⊗ In)∗Xk(bk(z)⊗ In) Xk � 0

If hk > 0 for some k, then we are done

Otherwise we have to increase k

Similarly for the hierarchy of EVP problems
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Application example 1

Three states, two delays

H1 =

 0 0.2 −0.4
−0.5 0.3 0

0.2 0.7 0

 H2 =

 −0.3 −0.1 0
0 0.2 0

0.1 0 0.4


Applying brute force method (with N = 360) provides

γ0 > 0.7507

in less then 0.1 seconds

However this is only a lower bound, and we cannot guarantee

strong stability (γ0 > 1)



Application example 1

Matlab script for SDP approach

H1=[0 0.2 -0.4;-0.5 0.3 0;0.2 0.7 0];

H2=[-0.3 -0.1 0;0 0.2 0;0.1 0 0.4];

p=sampledet({eye(3),H1,H2}); % evaluate determinant

p=p(:,abs(p(1,:))>1e-8); % remove small coefficients

H=trigoherm(p); % compute Hermite matrix

[A,b,c,K]=trigohermgram(H); % build SDP problem

[x,y,info]=sedumi(A,b,c,K); % solve SDP problem

M-files available for download at

homepages.laas.fr/henrion/software/trigopoly.tar.gz



Application example 1

SDP problem in primal/dual form

minx cTx maxy bTy

s.t. Ax = b s.t. z = c−ATy
x ∈ K z ∈ K

The resulting SDP problem has size length(x)=2304, length(y)=225

and a positive semidefinite Gram matrix of size K.s=48 is found

after less than 0.1 seconds with SeDuMi 1.3

So we can guarantee that γ0 < 1



Spectral radius rσ(θ1)



Application example 2

Four states, three delays

H1 =

 −0.15 0 0.32 0
0 −0.07 0 0.05

0.08 0 0.04 0
0.2 0.03 0 −0.13

 H2 =

 −0.02 0.12 0 0.25
0 −0.05 0.04 0
0 0.23 0 −0.3

0.19 0 0.28 −0.09



H3 =

 0 0 −0.03 0.14
0.01 −0.04 0 0

0 0 0.09 0.26
0.05 −0.27 −0.06 0



Brute force method (with N = 360) provides a lower bound

γ0 > 0.6028

in 4.5 seconds



Application example 2

The resulting SDP problem has size length(x)=250000, length(y)=5840

and a positive semidefinite Gram matrix of size K.s=500 is found

after approximately 6 minutes of CPU time

So we can guarantee that γ0 < 1



Spectral radius rσ(θ1, θ2)



Application example 3

Four states, four delays

H1 =


0.1 0 0 −0.2

π
5
−0.1 0 −0.3

0 0 0.03 2
0 −e−1 0 0.23

 H2 =

 0 0 0 0.0456
0 −0.33 0.11 0
0 1 0.2 0
0 −e−3 0.176 0.73



H3 =

 0.1 0.65 0 0.42
0.087 −π

8
−0.1 0

0 −0.063 0 0.72
0.076 0.1 0 −0.23

 H4 =

 −0.678 0 0 −0.4
−0.0983 0 0 0

0 0.0763 0 0.2
−e−5 0 0.36 0


Applying brute force method (with N = 360) provides
γ0 > 1.7649 in more than 30 minutes

The resulting SDP problem is too large to be solved by standard
computers


