

${\rm H}_\infty$ preview control of an active stabilizer for heart-beating surgery

E. Laroche⁽¹⁾, W. Bachta⁽²⁾, P. Renaud⁽¹⁾, J. Gangloff⁽¹⁾

⁽¹⁾ LSIIT (UMR CNRS-ULP 7005), U. Strasbourg & CNRS, France ⁽²⁾ ISIR, Univ. Paris 6, France

French-Israeli Workshop on Delays and Robustness Haifa, Israel, April 3-5, 2011

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Outline

2 Control Issue

3 Control design

5 Conclusion

< ≣ >

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Outline

2 Control Issue

3 Control design

4 Robustness analysis

5 Conclusion

> < 臣 > < 臣 > 。

Context of beating-heart surgery ●○○

Control Issue

Control design

Robustness analysis

Conclusion

Beating-heart surgery

Context of beating-heart surgery

Context

- Coronary Artery Bypass Grafting (CABG): a frequent operation in the case of heart blood irrigation insufficiency
- Current most used procedure: stop the heart and implementation of an extra corporeal circulation
- CABG with heart-beating operation: reduce complications
- Use of mechanical stabilizers in order to immobilize the area of operation (ex: Octopus by Medtronic)

Limitation of current stabilizers

- Residual displacement about 1 mm [Cattin04]
- Required accuracy : 0.1 mm
- Insufficient of endoscopic surgery [Loisance05]

Investigated solution

Figure: Invasive stabilizer: Octopus 4.3 (Medtronic)

Figure: Endoscopic stabilizer: Octopus TE (Medtronic)

Context of beating-heart surgery ○●○	Control Issue	Control design	Robustness analysis	Conclusion
Cardiolock: an active cardiac stabilizer				
Cardiolock 1				

Description

- Beam
 - Diameter compatible with minimally invasive surgery (10 mm diameter)
 - Sterilizable in autoclave
 - Fixed on the heart by suction

Actuation system

æ

Context of beating-heart surgery ○●○	Control Issue	Control design	Robustness analysis	Conclusion
Cardiolock: an active cardiac stabilizer				
Cardiolock 1				

Description

- Beam
- Actuation system
 - Parallel mechanism
 - Rotating compliant joints: no backlash
 - · Linear piezo actuator: high dynamics and accuracy
 - Enclosed in a sterile bag

3

∢ 臣 ▶

Context of	beating-heart surgery
000	

Control Issue

Control design

Robustness analysis

Conclusion

Cardiolock: an active cardiac stabilizer

Cardiolock 2

Full system

Detail on one DOF

- 2 DOF
- Each DOF is actuated by a parallel mechanism in quasi-singulaity

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
000	0000000	000000000000		

Outline

2 Control Issue

3 Control design

A Robustness analysis

5 Conclusion

★ E > ★ E >

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
Cardialock under operation				

Cardialock under operation

- Perturbation rejection (heart beating and respiration)
- Availability of the frequencies of the heart (ECG) and respiration (artificial ventilation) for constructing a model of the perturbation

Context of beating-heart surgery	Control Issue ○●○○○○○	Control design	Robustness analysis	Conclusion
Dynamic model				
Dvnamic model				

Modelling

Under the PRBS assumption

Figure: Simplified scheme with equivalent rigid deformation

- Control : $u = q_1$
- Measurement by camera : y = position of the tip of the beam

context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
000	000000			
ynamic model				

Figure: Bloc-diagram of the system

$$M_{21}\ddot{q}_1 + M_{22}\ddot{q}_2 = l_2F_c - K_2q_2 - f_2\dot{q}_2 \tag{1}$$

$$q_1 = u \tag{2}$$

$$y = (l_1 + l_2)q_1 + l_2q_2 \tag{3}$$

Flexible non-minimum phase system

æ

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
Control issue				

Figure: Simplified scheme for control design

Camera + ZOH equivalent to a UOH [IFAC 2008]

$$H(z) = z^{-1} \left(\frac{1-z^{-1}}{T}\right)^2 \mathcal{ZL}^{-1} \left(\frac{G_2(s)}{s^2}\right)$$

Control issue

- Rejection of an output perturbation
- Estimation of the perturbation with $\hat{p} = H(z) u v$

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
Control issue				

æ

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
000	0000000	00000000000		
Perturbation model				

Prediction of the perturbation

Two components:

- heart $(d\phi_c/dt = 2\pi f_c$ where f_c is evaluated after each ECG period)
- ventilation ($d\phi_r/dt = 2\pi f_r$ where f_r is given by the ventilation system)
- Perturbation signal $p(t) = M_r(t) + M_c(t)$
- Ventilation component only from ventilation phase: $\mathcal{M}_r(t) = \sum_{l=1}^{n_r} a_l \sin \left(I\phi_r(t) \right) + b_l \cos \left(I\phi_r(t) \right)$
- Heart composante based on both heart and ventilation phases : $\mathcal{M}_c(t) = \mathcal{C}_c(t)(1 + \mathcal{C}_r(t))$ where

•
$$C_c(t) = \sum_{l=1}^{n_c} e_l \sin(l\phi_c(t)) + f_l \cos(l\phi_c(t))$$

•
$$C_r(t) = \sum_{l=1}^{n'_r} g_l \sin(l\phi_r(t)) + h_l \cos(l\phi_r(t))$$

• Change of variable in order to obtain a linear-parameter model $(p(t) = \sum_{l=1}^{n_{\theta}} \theta_l \phi(t))$ and parameter estimation with recursive mean square

• Prediction
$$\hat{p}(t+\delta) = \sum_{l=1}^{n_{\theta}} \hat{\theta}_l \phi(t+\delta)$$

Context of beating-heart surgery

Control Issue ○○○○○● Control design

Robustness analysis

Conclusion

Perturbation model

Evaluation on experimental data

Figure: Residual displacement measured with a passive stabiliser (plain) and 3-samples ahead prediction (dashed, $T_e = 3 \text{ ms}$)

- E

Context	of	beating-heart	surgery

Control Issue

Control design

Robustness analysis

(日)

Conclusion

Outline

2 Control Issue

3 Control design

Robustness analysis

5 Conclusion

Context of beating-heart surgery

Control Issue

Control design ●○○○○○○○○○○○ Robustness analysis

Conclusion

Simple feedback controller

Several approaches for rejection of quasi-periodic perturbation

- Dynamic output feedback
- Estimate and compensate
 - Least-square recursive estimation
 - Kalman filter
- Repetitive control (in discrete-time)
- Adaptive compensation (direct adaptation of the parameters of a perturbation model [Bodson 2001])

▶ < 토▶ < 토▶

Context of beating-heart surgery

Control Issue

Control design

Robustness analysis

Conclusion

Simple feedback controller

Simple feedback controller (synthesis in continuous time)

Figure: 2-blocs synthesis scheme (for tuning modulus margin, accuracy, bandwidth and roll-off)

Figure: Frequency response (features: dot; system behavior: plain)

Context of beating-heart surgery	Control Issue	Control design ○O●○○○○○○○○○	Robustness analysis	Conclusion
Simple feedback controller				
Resonant feedback	controller			

• $W_1(s)$ is modified with a resonant filter adapted to the cardiac frequency

æ

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
		000 0000 0000		
Preview controller				

2-DOF controller (feedback + feedforward)

Figure: Control scheme with measured perturbation

- $K(z) = [K_1(z) | K_2(z)], H(z) = [H_1(z) | H_2(z)]$
- $T_{\nu\rho}(z) = (I H_2(z) K_2(z))^{-1} (H_1(z) + H_2(z) K_2(z))$
- Feedback K₂(z) for rejection in low frequency (robust to the model errors)
- Feedforward $K_1(z)$ to enhance the rejection at higher frequency $(K_1(z) = -H_2^{-1}(z) H_1(z))$ (sensitive to the model errors)
- Restriction if H₁(z) have non proper or non sable inverse (both in our case)
- Solution: synthesis of K(z) in one shot (idem as an additional measurement)
- Limitation: the information comes too late for an efficient control action

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
Preview controller				
Preview controller				

Figure: Principle of preview control

- Anticipation made possible by the prediction model
- Controller synthesis in one shot
- Similitude with predictive control: requires to know in advance the future samples of the exogenous signal (i.e. reference or perturbation)

< ロ > < 同 > < 三 >

Equivalent for reference tracking

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion
Preview controller				
Full control schen	ne			

Figure: Control scheme with estimation of the perturbation

æ

イロト イヨト イヨト イヨト

Context of beating-heart surgery	Control Issue	Control design ○○○○○○●○○○○○	Robustness analysis	Conclusion
Preview controller				
Synthesis scheme	•			
			$\bigvee v_2$	
			<i>W</i> ₃ (s)	
			$\tilde{\rho}$	
			delay	

u

H(s)

 $W_2(s)$

Z₂

 Z_1

K(s)

 $W_1(s)$

Figure: Synthesis scheme for the 2-DOF controller allowing to tune separately the feedback and feedforward effects $(\tilde{p}(t) = e^{\tau s} p(t))$

- Synthesis in continuous-time (continuous-to-discrete conversion with the bilinear transform)
- Pade approximation of the delay
- Advance from the prediction model

Context	of	beating-heart	surgery

Control Issue

Control design

Robustness analysis

Conclusion

Preview controller

Figure: Frequency response with the 2-DOF preview controller (features: dots; realized system: plain)

Context of beating-heart surgery

Control Issue

Control design

Robustness analysis

Conclusion

Nominal evaluation

Laboratory experimental setup

video spring camera

heart simulator

Heart movement emulated by a pan-tilt robot

> < 프 > < 프 >

Context	of	beating-heart	surgery

Control Issue

Control design

Robustness analysis

イロン イボン イヨン イヨン

Conclusion

Nominal evaluation

Experimental results

In-vivo tests were also made

Context of beating-heart surgery

Control Issue

Control design

Robustness analysis

イロン イヨン イヨン -

Conclusion

Nominal evaluation

Evaluation in simulation with experimental data

Control method	RMS displacement (pixel)
No control	22.3
Simple feedback	2,57
Resonant feedback	1,69
2-DOF with preview with perfect prediction	0,064
2-DOF with preview with estimated prediction	1,21

Table: Residual displacement obtained with the nominal model (prediction made with $n_c = 10$ and $n_r = n'_r = 4$)

2

Context of beating-heart surgery

Control Issue

Control design

Robustness analysis

Conclusion

Nominal evaluation

Residual movement frequency analysis

blue: simple feedback; red: resonant feedback; purple: 2-DOF with preview with perfect prediction; green: 2-DOF with preview with estimated prediction

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Outline

- Context of beating-heart surgery
- 2 Control Issue
- 3 Control design
- A Robustness analysis

5 Conclusion

▶ < 문 > < 문 > ...

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Co

Uncertain model

Robustness issue

Modification of the system behavior when in contact with the heart

Interaction model

$$F = F_c - k_c y - f_c k \dot{y} - m_c \ddot{y}$$
(4)

- *F_c*: exogenous perturbation
- Nominal values: $m_c = 2$ g, $K_c = 250$ N/m and $f_c = 0.1$ N.s/m
- Consider variations from 0 à 200 %

nclusion

Context	of	beating-heart	surgery

Control Issue

Control design

Robustness analysis

< ロ > < 回 > < 回 > < 回 > .

Conclusion

Uncertain model

μ -analysis context

- Constants uncertains parameters
- LFR model
- Use of a performance criterion
- Robust if $\mu < 1$

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Simple feedback control

LFR model (stability + performance)

Figure: Structure du modèle LFR incertain

 Δ_c real diagonal; Δ_r full complex

-

Context of beating-heart surgery

Control Issue

Control design

Robustness analysis

Conclusion

Repetition index of the uncertain parameters

Parameter	Direct	Reduction	Robust toolbox
m _c	9	3	1
K_c	3	2	1
f _c	3	1	1

Table: Repetition index of the uncertain parameters of the LFR model obtained with different methods (Direct and Reduction: with LFR toolbox

Context of	beating-heart	surgery

Control Issue

Control design

Robustness analysis

Conclusion

μ plot

Figure: Structured singular value

$\rightarrow \mu <$ 1: robust to the considered uncertainties

æ

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

2-DOF preview control

- Non causal model $T_{yp}(s) = lft(G(s), e^{\tau s})$ that cannot be factorized (i.e. $T_{yp}(s) = e^{\tau_1 s}G_1(s)e^{\tau_2 s}) \rightarrow$ usual tools cannot be used
- Evaluation in simulation with p_k = ρ p_{k0} where p_{k0} is the nominal value and ρ ∈ [0; 2]

Figure: Variation of the residual motion with respect to the parameter value ρ (plain: feedback control; dashed: preview control)

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Outline

- Context of beating-heart surgery
- 2 Control Issue
- 3 Control design
- A Robustness analysis

> < 臣 > < 臣 > 。

Context of beating-heart surgery	Control Issue	Control design	Robustness analysis	Conclusion

Conclusion

- $\bullet\,$ Simple and efficient procedure for synthesis of preview H_∞ control
- Improvement thanks to the prediction of the pertuabation
- Obtained accuracy in accordance with the requirements for heart-beating surgery

Future work

- Robustness analysis for the 2-DOF prevew controller with estimation
- Evaluation of Cardiolock 2
- Comparison with GPC