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The theme of this talk

Problem­oriented control scheme for control of dead­time systems,

� dead­time compensation (DTC)
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Prolog: a friendly intro to dead­time compensation

Time­delay stabilization problem for n­dimensional equation

xŒk C 1� D AxŒk�C BuŒk � h�

where x and u measurable and .A; B/ controllable is equivalent to

Delay­free stabilization problem for .nC h/­dimensional state equation
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where xa and u measurable and .Aa; Ba/ controllable.
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Pole placement

Controllability H) spec.Aa C BaFa/ can be assigned arbitrarily. But

� Aa D
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has h eigenvalues at the origin,

which might make sense to keep untouched. With this in mind, applying

the Ackermann’s formula to

�cl,a.´/ D �cl.´/´h; for arbitrary n­order �cl.´/

and exploiting the structure of Aa and Ba, we end up with

Fa D F
�

B AB � � � Ah�1B Ah
�

;

where F solves det.AC BF / D �cl.´/, which is n­dimensional (delay free).
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Control law

The control law we just derived,

uŒk� D F

�

AhxŒk�C

h
X

iD1

Ai�1BuŒk � i �

�

calc
D F xŒk C h�;

can be interpreted as predictive state feedback.

Controllers of the form

here, ˘.´/ D

h
X

iD1

Ai�1B´�i

where

� internal feedback aims at rendering Qx a prediction of x

� primary part designed for a delay­free plant

called dead­time compensators (DTCs).
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Smith controller

C.s/

reQeu

d

y QC.s/

P.s/.1� e
�sh/

P.s/e�sh
� �

Introduced by Otto J. M. Smith in 1957, comprises

� P.s/.1� e�sh/ — Smith predictor

w/o d , we have that Qe D .r � y/ � P.1� e
�sh/u D r � P u is prediction of delay­free e

� QC .s/ — primary controller

designed for delay­free P.s/
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Closed­loop system

C.s/

reQeu

d

y QC.s/

P.s/.1� e
�sh/

P.s/e�sh
� �

Closed­loop response

y D e�sh P QC

1C P QC
r C

1C P QC.1 � e�sh/

1C P QC
Pd:

has no delay in denominators, meaning that

R̂ delay eliminated from the characteristic equation

R̂ reference response greatly simplified
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Success story

C.s/

reQeu

d

y QC.s/

P.s/.1� e
�sh/

P.s/e�sh
� �

� intriguing properties

numerous studies (zillions of papers, many book chapters)

� numerous modifications / generalizations

modified Smith predictor, finite spectrum assignment, etcetera

� it does work

many industrial applications, part of commercial controllers

Otto J. M. Smith listed in the ISA “Leaders of the Pack” list (2003) as one of
the 50 most influential industry innovators since 1774.
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“A process engineer’s crystal ball” (V. J. VanDoren)

C.s/

reQeu

d

y QC.s/

P.s/.1� e
�sh/

P.s/e�sh
� �

So far as the structure of DTC is concerned:

� empirical approaches dominate
driven mostly by engineering insight, with few attempts to be rigorous

� many extensions /modifications, but few analytically justified

structure postulated and then its properties analyzed

� simulations as proofs

+

� quite a few misconceptions
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Urban legends (partial list)

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation

� intrinsically poor robustness

� stabilization induces “true” DTC controller structure

� artificial loop delays might be advantageous in multiple­delay systems
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Stability

˘ Stabilization (Watanabe & Ito, 1981)

stabilization via eliminating delays from the characteristic equation for unstable plants,

introduced the modified Smith predictor (MSP)

˘ Finite spectrum assignment (Manitius & Olbrot, 1979; Lewis, 1979;

Furukawa & Shimemura, 1983; et alii)
state­predictor, observer­predictor; equivalent to MSP (Mirkin & Raskin, 2003)

ı Youla parametrization (Mirkin & Raskin, 2003)

parametrization of all stabilizing controllers, MSP

ı Coprime factorization (Curtain, Weiss, & Weiss, 1996)

MSP is an integral part of it

ı Robust stability (Morari & Zafiriou, 1989; Zwart & Bontsema, 1997;

Mirkin & Raskin, 2003)
DTCs maximize robustness radius for several uncertainty descriptions

ı Nonlinear systems (Krstic, 2009)

Lyapunov analysis
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Stability­induced controller structure

Analytical approaches bring about1 DTC controller structure

C.s/

reQeu

d

y QC.s/

˘.s/

P.s/e�sh
� �

consisting of

� irrational ˘.s/ in internal feedback

only limited to be stable and such that QP .s/´ P.s/e�shC˘.s/ rational; always exists

– Smith predictor corresponds to ˘.s/ D P.s/.1 � e
�sh/, works only for stable P

– modified Smith predictor yields ˘.s/ with finite impulse response (FIR)

� rational QC .s/ (primary controller)

stabilizes rational QP .s/

1Controller structure results from solution procedure, not postulated beforehand.
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Performance

Early results:

ı LQG optimal control (Kleinman, 1969)

effectively invented observer­predictor controller (unfortunately, overlooked)

ı SISO minimum variance control (Palmor, 1982)

optimal controller can always be cast as Smith predictor if plant stable

Recent problem­oriented solutions

ı H 1 (Tadmor, 2000; Meinsma & Zwart, 2000; Mirkin, 2003)

ı H 2 / LQG (Mirkin & Raskin, 2003)

ı L1 (Mirkin, 2006; Di Loreto et al, 2008)

demonstrated that

� DTC is an intrinsic part of general optimal solutions



Prolog Smith predictor Single­delay DTC Multiple­delay DTC FASP Stability to performance Conclusions

Performance

Early results:

ı LQG optimal control (Kleinman, 1969)

effectively invented observer­predictor controller (unfortunately, overlooked)

ı SISO minimum variance control (Palmor, 1982)

optimal controller can always be cast as Smith predictor if plant stable

Recent problem­oriented solutions

ı H 1 (Tadmor, 2000; Meinsma & Zwart, 2000; Mirkin, 2003)

ı H 2 / LQG (Mirkin & Raskin, 2003)

ı L1 (Mirkin, 2006; Di Loreto et al, 2008)

demonstrated that

� DTC is an intrinsic part of general optimal solutions



Prolog Smith predictor Single­delay DTC Multiple­delay DTC FASP Stability to performance Conclusions

Performance­induced controller structure

C.s/

reQeu

d

y QC.s/

˘.s/

P.s/e�sh
� �

� irrational stable ˘.s/ in internal feedback
– MSP in H 2 and L1 cases
– MSP + feedforward SP of (Palmor & Powers, 1985) for worst­case d in H 1 case

� rational QC .s/

solves corresponding problem for rational QP .s/´ P.s/e�sh C˘.s/
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Stability vs. performance: single­delay case

No conflict
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MythBusters

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation  � busted

� intrinsically poor robustness  � busted

� stabilization induces “true” DTC controller structure  � plausible

� artificial loop delays might be advantageous  � busted
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MythBusters

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation  � busted

� intrinsically poor robustness  � busted

,! controllers maximizing complex robustness radii (H 1, L1) are all DTCs
,! SP preserves robustness of delay­free design to uncertainty in P.s/

� stabilization induces “true” DTC controller structure  � plausible

� artificial loop delays might be advantageous  � busted
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Multiple I/O delay systems

Different delays in different I/O channels:

�u.s/�y.s/ u0

u1

uq

y0

y1

yp

P.s/
e

�sh1

e
�shq

e
�shqC1

e
�shqCp

:::
:::

where

�u.s/ D

2

4

I

e
�sh1 I

: : :

e
�shq I

3

5 and �y.s/ D

2

4

I

e
�shqC1 I

: : :

e
�shqCp I

3

5
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Example: hot strip mill profile control

� sensors for measuring thickness at edges and at the centerline located

at different distances from the stand exit
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Stability

Direct extensions of single­delay results:

ı Youla parametrizaion (Raskin, 2001; Moelja & Meinsma, 2003)

ı finite spectrum assignment (Kwon & Pearson, 1980; Artstein, 1982;

Fiagbedzi & Pearson, 1990)

Induced controller structure:

� irrational ˘.s/ in internal feedback

stable and such that QP .s/´ �y.s/P.s/�u.s/C˘.s/ rational; always exists

� rational QC .s/ (primary controller)

stabilizes rational QP .s/
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� irrational ˘.s/ in internal feedback

stable and such that QP .s/´ �y.s/P.s/�u.s/C˘.s/ rational; always exists

� rational QC .s/ (primary controller)

stabilizes rational QP .s/



Prolog Smith predictor Single­delay DTC Multiple­delay DTC FASP Stability to performance Conclusions

Performance

Choosing any stable DTC ˘ D QP � P e�sh with rational QP ,

C.s/

reQeuy QC.s/

˘.s/

P.s/e�sh
� �

Single input delay: because P e�sh D e�shP ,

Try D P e�sh QC .I C QP QC /�1 D .e�sh

„ƒ‚…

non­invertible

P QC .I C QP QC /�1

„ ƒ‚ …

rational

R̂ irrational non­invertible inner (i.e., energy preserving) part is isolated

R̂ QC designed ignoring e�sh

more precisely, not accounting for e
�sh explicitly
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Performance

Choosing any stable DTC ˘ D QP � P�u with rational QP ,

C.s/

reQeuy QC.s/

˘.s/

P.s/�u.s/
� �

Multiple input delays: in general P�u ¤ �uP (input channels mix up in y),

hence

Try D P�u
QC .I C QP QC /�1

R_ hard to analyze

non­invertible irrational �u stuck in the middle

R_ poor performance if QC designed ignoring �u

noticed by Jerome & Ray (1986), who analyzed prior attempts
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State of the art: GMDC (Jerome & Ray, 1986)

Generalized multidelay compensator (GMDC) attempts to pull �u through

the output (the rearrangement test):

P�u D �u
QPJR for some (irrational) causally invertible QPJR:

If possible: set �a D I

If impossible: find artificial delays �a such that P�u�a passes the test

always exists, just think of �u D
�

1
e

�sh

�

, for which �a D
�

e
�sh

1

�

results in

�u�a D e
�shI (single delay)

Then,

� choose ˘ D QPJR � P�u�a

� design QC for (possibly irrational) QPJR
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GMDC (multiple input delays)

C.s/

reQeuy QC .s/�a.s/

˘.s/

P.s/�u.s/
� �

Two important aspects:

1. artificial loop delays might be added

2. delays might no longer be eliminated from the characteristic equation

Jerome & Ray argued that this might be necessary to improve performance
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GMDC (multiple input delays)

C.s/

reQeuy QC .s/�a.s/

˘.s/

P.s/�u.s/
� �

Two important aspects:

1. artificial loop delays might be added  � appears counterintuitive

2. delays might no longer be eliminated from the characteristic equation

Jerome & Ray argued that this might be necessary to improve performance
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Artificial delays: additional motivation

u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

1

Goals:

y0.t / D u0.t / tracks the unit step 1.t /

yh.t / D uh.t � h/C au0.t / stays at zero

Arguments of Holt & Morari (1985), dynamic resilience theory:

� undesirable effect of u0.t / D 1.t / on yh (coupling)

� only partially compensated by uh.t / D �a1.t / because of the delay

� fully compensated by artificial delay in u0, but at the expense of y0

� hence, introducing artificial input delay may improve performance
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Arguments of Holt & Morari (1985), dynamic resilience theory:

� undesirable effect of u0.t / D 1.t / on yh (coupling)

� only partially compensated by uh.t / D �a1.t / because of the delay

� fully compensated by artificial delay in u0, but at the expense of y0

� hence, introducing artificial input delay may improve performance
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Artificial delays: additional motivation

u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

1

a

1

�a

Goals:

y0.t / D u0.t / tracks the unit step 1.t /

yh.t / D uh.t � h/C au0.t / stays at zero

Arguments of Holt & Morari (1985), dynamic resilience theory:

� undesirable effect of u0.t / D 1.t / on yh (coupling)

� only partially compensated by uh.t / D �a1.t / because of the delay

� fully compensated by artificial delay in u0, but at the expense of y0

� hence, introducing artificial input delay may improve performance
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Artificial delays: additional motivation

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

e
�sh

1 1

�a

Goals:

y0.t / D u0.t / tracks the unit step 1.t /

yh.t / D uh.t � h/C au0.t / stays at zero

Arguments of Holt & Morari (1985), dynamic resilience theory:

� undesirable effect of u0.t / D 1.t / on yh (coupling)

� only partially compensated by uh.t / D �a1.t / because of the delay

� fully compensated by artificial delay in u0, but at the expense of y0

� hence, introducing artificial input delay may improve performance
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Artificial delays: additional motivation

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

e
�sh

1 1

�a

Goals:

y0.t / D u0.t / tracks the unit step 1.t /

yh.t / D uh.t � h/C au0.t / stays at zero

Arguments of Holt & Morari (1985), dynamic resilience theory:

� undesirable effect of u0.t / D 1.t / on yh (coupling)

� only partially compensated by uh.t / D �a1.t / because of the delay

� fully compensated by artificial delay in u0, but at the expense of y0

� hence, introducing artificial input delay may improve performance
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GMDC (multiple input delays)

C.s/

reQeuy QC .s/�a.s/

˘.s/

P.s/�u.s/
� �

Two important aspects:

1. artificial loop delays might be added

2. delays might no longer be eliminated from the characteristic equation

Jerome & Ray argued that this might be necessary to improve performance
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Stability vs. performance: multiple­delay case

Might conflict
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Talk outline

Prolog: a friendly intro to dead­time compensation

Smith predictor: the first dead­time compensator

Single­delay dead­time compensation: analytical justifications

Multiple­delay dead­time compensation

Feedforward action Smith predictor (FASP)

From stability­ to performance­oriented

Conclusions
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Input adobe delay

To simplify exposition, consider

�u.s/ u0

uh

y
P.s/

e
�sh

i.e., assume that

�u.s/ D

�

I 0

0 e�shI

�

and �y.s/ D I:

� simplest nontrivial generalization of single­delay case

� captures the essence

� general case solved via nested recursion of adobe problems



Prolog Smith predictor Single­delay DTC Multiple­delay DTC FASP Stability to performance Conclusions

Starting point

Technical outcome of

ı multiple delay H 1 solution (Meinsma & Mirkin, 2005)

C

QC˘u;0h

˘h

yQy

Qu0

uh

u0

with

1. rational QC

2. irrational (FIR) ˘h

3. irrational (FIR) ˘u;0h

Resolved in (Mirkin, Palmor, & Shneiderman, 2011).
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Starting point

Technical outcome of

ı multiple delay H 1 solution (Meinsma & Mirkin, 2005)

C

QC˘u;0h

˘h

yQy

Qu0

uh

u0

with

1. rational QC  � conventional

2. irrational (FIR) ˘h  � conventional

3. irrational (FIR) ˘u;0h  � unorthodox

Called

� FASP— feedforward action Smith predictor
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Starting point

Technical outcome of

ı multiple delay H 1 solution (Meinsma & Mirkin, 2005)

C

QC˘u;0h

˘h

yQy

Qu0

uh

u0

with

1. rational QC

2. irrational (FIR) ˘h

3. irrational (FIR) ˘u;0h  � rationale ???
Resolved in (Mirkin, Palmor, & Shneiderman, 2011).
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Upper triangular case

Assume2 first that

P.s/ D

�

P0.s/ P0h.s/

0 Ph.s/

�

with square and invertible P0.s/

or
�uP

P0

P0h

Ph e
�sh

u0

uh

y0

yh

where

y0 affected by mixture of delay­free and delayed input channels

yh affected only by delayed input channel

2This is the only class passing the rearrangement test.
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Upper triangular case: pulling �u through y

�uP

P0

P0h

Ph e
�sh

u0

uh

y0

yh

!

�u
QPJR

P0

P0he
�sh

Phe
�sh

u0

uh

y0

yh

� this is where Jerome & Ray stopped

QPJR D

�

P0 P0he�sh

0 Ph

�

is causally invertible

where rational QP0h and stable (irrational) ˘u;0h are such that

P �1
0 P0he�sh D P �1

0
QP0h �˘u;0h
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Upper triangular case: pulling �u through y

�uP

P0

P0h

Ph e
�sh

u0

uh

y0

yh

!

�u
QPJR

P0

P0he
�sh

Phe
�sh

u0

uh

y0

yh

y0 D P0u0 C P0he�shuh

D P0.u0 C P �1
0 P0he�shuh/

D P0.u0 C .P �1
0
QP0h �˘u;0h/uh/

D P0.u0 �˘u;0huh/C QP0huh;

where rational QP0h and stable (irrational) ˘u;0h are such that

P �1
0 P0he�sh D P �1

0
QP0h �˘u;0h
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Upper triangular case: pulling �u through y

�uP

P0

P0h

Ph e
�sh

u0

uh

y0

yh

!

�u
QPJR

P0

P0he
�sh

Phe
�sh

u0

uh

y0

yh

#

y0 D P0u0 C P0he�shuh

D P0.u0 C P �1
0 P0he�shuh/

D P0.u0 C .P �1
0
QP0h �˘u;0h/uh/

D P0.u0 �˘u;0huh/C QP0huh;

�u
QP ˘ �1

u

P0

QP0h

Phe
�sh

˘u;0h

u0

uh

y0

yh

-

where rational QP0h and stable (irrational) ˘u;0h are such that

P �1
0 P0he�sh D P �1

0
QP0h �˘u;0h
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Upper triangular case: pulling �u through y (contd)

�uP

P0

P0h

Ph e
�sh

u0

uh

y0

yh

”

�u
QP ˘ �1

u

P0

QP0h

Phe
�sh

˘u;0h

u0

uh

y0

yh

-

where

� �u is (non­invertible) output delay

� QP is rational

� irrational

˘u ´

�

I ˘u;0h

0 I

� �

with ˘�1
u D

�

I �˘u;0h

0 I

��

is bi­stable H) can be canceled (by control law u D ˘u Qu).
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Upper triangular case: canceling ˘�1
u by FASP

�u
QP ˘ �1

u ˘u

uh

u0 Qu0y0

yh

eQe

P0

QP0h

Phe
�sh

QC

˘h

˘u;0h ˘u;0h

-

Thus, now

y0 affected only by delay­free input channel

yh affected only by delayed input channel

In other words, FASP interchannel block

� ˘u;0h compensates for delay in “delay­free” output y0

and then FASP feedback block

� ˘h eliminates delays from characteristic equation
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Upper triangular case: canceling ˘�1
u by FASP

�u
QP

uh

Qu0y0

yh

eQe

P0

QP0h

Phe
�sh

QC

˘h

Thus, now

y0 affected only by delay­free input channel

yh affected only by delayed input channel

In other words, FASP interchannel block

� ˘u;0h compensates for delay in “delay­free” output y0

and then FASP feedback block

� ˘h eliminates delays from characteristic equation
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Upper triangular case: canceling ˘�1
u by FASP

�u
QP ˘ �1

u ˘u

uh

u0 Qu0y0

yh

eQe

P0

QP0h

Phe
�sh

QC

˘h

˘u;0h ˘u;0h

-

Thus, now

y0 affected only by delay­free input channel

yh affected only by delayed input channel

In other words, FASP interchannel block

� ˘u;0h compensates for delay in “delay­free” output y0

and then FASP feedback block

� ˘h eliminates delays from characteristic equation



Prolog Smith predictor Single­delay DTC Multiple­delay DTC FASP Stability to performance Conclusions

General case

Instead of P�u D �u
QP ˘�1

u , factor (quite technical)

P.s/�u.s/ D 	y.s/ QP .s/˘�1
u .s/

where

� QP .s/ is rational

having the same order and poles as P.s/

� ˘u.s/´
h

I ˘u;0h.s/

0 I

i

is bi­stable

with FIR ˘u;0h, exactly as in the triangle case

� 	y.s/ is inner (i.e., stable and energy preserving)

also FIR; the next best thing to �u
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The role of ˘u

Partition P D
�

P0 Ph

�

(compatibly with input channels). Then

y D P�uu D P0 u0 C e�shPh uh

has delay­free and delayed parts mixed in it. Feedforward compensation of

FASP, u D ˘u Qu, yields

y D P�u˘u Qu D P0 Qu0
„ƒ‚…

y0

Ce�sh .I �Q0/Ph uh
„ ƒ‚ …

yh

where

� Q0.j!/ is orthogonal projection onto the image of P0.j!/

so that P0.j!/ ? .I �Q0.j!//Ph.j!/ and, hence, y0 ? yh.

Thus, feedforward part of FASP

� renders delay­free (y0) and delayed (yh) parts of y orthogonal (in L2.R/)
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The role of ˘u

Partition P D
�

P0 Ph

�

(compatibly with input channels). Then

y D P�uu D P0 u0 C e�shPh uh

has delay­free and delayed parts mixed in it. Feedforward compensation of

FASP, u D ˘u Qu, yields

y D P�u˘u Qu D P0 Qu0
„ƒ‚…

y0

Ce�sh .I �Q0/Ph uh
„ ƒ‚ …

yh

where

� Q0.j!/ is orthogonal projection onto the image of P0.j!/

so that P0.j!/ ? .I �Q0.j!//Ph.j!/ and, hence, y0 ? yh.

Thus, feedforward part of FASP

� renders delay­free (y0) and delayed (yh) parts of y orthogonal (in L2.R/)
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The role of ˘u

Partition P D
�

P0 Ph

�

(compatibly with input channels). Then

y D P�uu D P0 u0 C e�shPh uh

has delay­free and delayed parts mixed in it. Feedforward compensation of

FASP, u D ˘u Qu, yields

y D P�u˘u Qu D P0 Qu0
„ƒ‚…

y0

Ce�sh .I �Q0/Ph uh
„ ƒ‚ …

yh

where

� Q0.j!/ is orthogonal projection onto the image of P0.j!/

so that P0.j!/ ? .I �Q0.j!//Ph.j!/ and, hence, y0 ? yh.

Thus, feedforward part of FASP

� renders delay­free (y0) and delayed (yh) parts of y orthogonal (in L2.R/)
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MythBusters

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation  � busted

� intrinsically poor robustness  � busted

� stabilization induces “true” DTC controller structure  � plausible

� artificial loop delays might be advantageous  � busted
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MythBusters

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation  � busted

� intrinsically poor robustness  � busted

� stabilization induces “true” DTC controller structure  � busted

,! stability­induced DTC might conflict with performance requirements
,! multiple­delay DTC should be performance dependent

� artificial loop delays might be advantageous  � busted
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MythBusters

C.s/

reu

d

y
P.s/e�sh

�

� not efficient in disturbance attenuation  � busted

� intrinsically poor robustness  � busted

� stabilization induces “true” DTC controller structure  � busted

� artificial loop delays might be advantageous  � busted

,! at least, not for the reason they’ve been believed so hitherto
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adding artificial delays

GMDC:

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

e
�sh

1 1

�a

error energy: kek2
2 D h (independent of a).

FASP (here �´ 1=.1C a2/):

error energy: kek2
2 D

a2

1Ca2 h < h (always better, especially if jaj small).
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No need in adding artificial delays

GMDC:

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

e
�sh

1 1

�a

error energy: kek2
2 D h (independent of a).

FASP (here �´ 1=.1C a2/):

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

a

1Ca2 .1 � e
�sh/

1
�

a�

1

�a

error energy: kek2
2 D

a2

1Ca2 h < h (always better, especially if jaj small).
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Doing it FASP way

GMDC:

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

e
�sh

1 1

�a

R_ robustness harmed anyway

FASP:

Qu0u0

uh

y0

yh

�

1 0

a 1

�

e
�sh

1

a
.1� e

�sh/

1 1

�a

R̂ decoupling without sacrificing robustness

R_ not universal
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Stability vs. performance: multiple­delay case

No conflict
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Talk outline

Prolog: a friendly intro to dead­time compensation

Smith predictor: the first dead­time compensator

Single­delay dead­time compensation: analytical justifications

Multiple­delay dead­time compensation

Feedforward action Smith predictor (FASP)

From stability­ to performance­oriented

Conclusions
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General case (Mirkin, Palmor, & Shneiderman, 2011)

By applying adobe loop shifting recursively as in (Meinsma & Mirkin, 2005)

G´w G´u

Gyw Gyu

�u�y

K

w´

uy

”

QK

QG´w
QG´u

QGyw
QGyu

K ˘ �1
u˘ �1

y

˘

	´ 	w

�

wQw´ Q́

u QuQy y-

� QG rational with the same “A” matrix as G

� 	´ and 	w inner and FIR

� � stable, FIR, and � ? 	´T Q́ Qw	w in H 2 for every T Q́ Qw 2 H 2

� ˘u and ˘y bistable and FIR

� ˘ stable and FIR
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Stability

G´w G´u

Gyw Gyu

�u�y

K

w´

uy

Effectively,

� only “�y �Gyu ��u �K” loop

needs to be analyzed
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Performance

G´w G´u

Gyw Gyu

�u�y

K

w´

uy

Closed­loop system is

T´w D G´w CG´u�uK.I ��yGyu�uK/�1�yGyw

and it

� depends on all components of G
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Qualitative difference

Conventional DTC: structure depends only on Gyu (real plant)

G´w G´u

Gyw Gyu

�u�y

K

w´

uy

FASP: structure also depends on G´u (effect of u on performance measure ´)

and Gyw (effect of exogeneous signal w on y)

G´w G´u

Gyw Gyu

�u�y

K

w´

uy
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Example

Sin D .I C�uKP /�1:

I I

�P �P

�u

K

w´

uy

It

� induces conventional DTC

(G´u D I commutes with �u).

Sout D .I C P�uK/�1:

I �P

I �P

�u

K

w´

uy

It

� induces FASP

(G´u D �P might not commute with

�u).
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Talk outline

Prolog: a friendly intro to dead­time compensation

Smith predictor: the first dead­time compensator

Single­delay dead­time compensation: analytical justifications

Multiple­delay dead­time compensation

Feedforward action Smith predictor (FASP)

From stability­ to performance­oriented

Conclusions
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First message

C.s/

yu

C.s/

yu

theor
y (analytical methods)
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Second message

Paradigm shift is in order
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