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Goals & method 
  
 To check the feasibility and to examine some 
      implementation issues of the Feedforward Action 

Smith Predictor (FASP) controller.   
 
 Performed by designing and applying the FASP to the 

Quadruple Tank Process with DTs (QTPwDT) lab setup. 
 

 Compared performances with the state of the art 
DTC-GMDC 
 

      Collaborator – Alexey German 
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Outline 
 MIMO LTI processes with multiple DTs & I/O DTs 
 
 Control of MIMO plants with multiple delays 
GMDC - state of the art DTC 
FASP- structure & properties 
 

 FASP- potential implementation difficulties and 
solutions 
 

 Quadruple-tank process with multiple delays (QTPwDT) 
The QTPwDT setup 
Properties of the QTPwDT 
 

 Experimental studies & results 
 

 Summary and conclusions 
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  arise naturally in many areas of engineering and sciences. 
     ( sensor networks, autonomous vehicles, biological systems, 
        networked control systems, internet congestion control,  
        farms of wind turbines and more) 

Processes with multiple DTs 

( )−
=( ) ( ) ijh s

ijP s p s e

Pij(s) – a rational transfer function relating input j to output i 
hij  - DT between input j and output i 
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 less general than              

Processes with multiple  I/O DTs 
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Multiple DTs & multiple I/O DTs 

( ) Λ Λ−
= =( ) ( ) ( ) ( ) ( )ijh s

ij y uP s p s e s G s s
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  Question:  
 
 Answer: (Sanchez-Pena et al, 2009) - iff 
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When it is impossible to extract all DTs to inputs and 
outputs we may factor (hij) as follows 

 
 
 a partial extraction problem may be defined (German, 2010): 
 
 
 
 
   J could be minimized with additional constraints on the  

structure of            

Partial extraction of DTs 
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Control of MIMO Plants with Multiple delays 
 
State of the art – the GMDC of Jerome & Ray (1986) 

 
 Based on the Dynamic Resilience Theory (DRT)  that considers 
     the DT decoupled response as the best achievable response (in 

the limit) 
   Λ  - Matrix of artificially added delays if process fails the RT 
   C0 - primary controller (typically a diagonal PI) 
       - is the process ( P or PΛ )with the smallest delay in each row   
         subtracted. 
 
 
 
 
 
 
 
 
 

P

K
C0

= −P PΠ Λ

−
r y

d

Λ P
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 The GMDC for I/O DTs 
 
 
 
 
 
 
 
 
 
 

G -  rational TF matrix 
Λu ,  Λy – diagonal delay   
             I/O matrices 
∏ - predictor 
K – overall GMDC 

K
C0

= −P PΠ Λ

−
r y

d

Λ y uP GΛ Λ=

P passes the  RT:   
 
P doesn’t pass the RT:    

( )y u y uPΛ Λ Λ GΛ
1−

=

( )−= y u y uP G
1

Λ ΛΛ Λ Λ Λ
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     may be irrational         delays not eliminated from  
    the characteristic equation  
 Not applicable to unstable processes!  
 No design/tuning method for C0  provided! 

 
 Applicable to the more general distribution of DTs 
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GMDC facts 

P

K
C0

= −P PΠ Λ

−
r y

d

Λ y uP GΛ Λ=
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uybΠ K

uy
yfΠ ufΠK u

FASP - structure  
w 

 
 



zw zu

yw yu

P P
P

P P

u

z

y
uΛyΛ

K

primary controller 

“Conventional” MSP 

inter-channel FF on controls  inter-channel FF on measurements 

( )Π Π Π−= −
u uy yf b fK K I K 1
 

Π Π ΠΛ Λ= −
uy y ub yu f fy yu uPP
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Role of FF compensators and predictor 

o FF on control compensates  for the coupling effects due  to 
the longer delayed control channels  on the outputs that are 
affected by the shorter delayed input channels.  

o FF on measurement compensates  for longer delayed 
measurements of exogenous inputs that are sensed through 
the shorter delayed channels. 

o Predictor eliminates all DTs from the characteristic 
equation 
 

  All three components consist of FIR blocks 
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 All H2  controllers are FASPs 
      (Mirkin, Palmor & Shneiderman, 2009) 
 
 FASP is intrinsic to all H∞ controllers 
      (Miensma & Mirkin, 2005) 
 
 Performance bounds of FASP are almost always  
     better than those of GMDC. 
     (Shneiderman, Palmor & Mirkin  , 2009) 
 
 FASP is performance dependent 
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FASP facts 

true extension of 
 single delay MSP! 
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 Numerical instabilities  

 
 

High dimensionality of rational components.  
 
 

 Realization of FIR blocks  
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FASP – potential implementation difficulties 

uybΠ
K

uy
yfΠ ufΠK u
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 Both primary controller as well as predictor and FF 

compensators rely on matrix exponentials of 
Hamiltonian matrices             elements grow rapidly 
with large delays and render the implementation 
numerically unstable. 

It has been shown* that under mild conditions the 
overall H2 controller can be realized with matrix 
exponentials of  just Hurwitz matrices 

However, the above increases significantly the 
dimensions of the primary controller 

 
*(Mirkin, Palmor & Shneiderman, 2009) 
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Numerical instabilities  
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Balanced truncation used to reduce dimensions of 

primary controllers simply and effectively.  Criterion: 
similar singular values of full and reduced order primary 
controllers throughout bandwidth of optimal closed loop.    
 

Experience with the case study at hand shows that 
dimension reduction by at least  a factor of 2 is possible 
with out affecting control performance significantly.  
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High dimensionality of rational components   
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Example   
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can be expressed as: 

 
 
 
 FIR (in         ) – entire function- no poles 
 Irrational 
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FASP - FIR blocks 

θ θΠ θ− − −
−

     
= − = ⋅ ⋅              

∫
00 0

( )
h

sh A h s
Ah

A B A B
e C e e d BCe C

[ ],0 h



19 19 

FIR block based upon stable system can be realized 
as a difference  of two systems 
 

 
 
FIR block based upon unstable system must be 
    realized with no unstable poles 
 
 
 

    approximations required  
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Realization of FIR blocks 
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Numerical integrations (Lumped delay approximation) 
 
 

 
 
 

 
 

 
 

 
 
*(Mirkin, 2004) 
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Approximations of 

1
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Quality approximation measure (QAM)** 
 

 
 

 
 
 QAM large- safe to use LDA. If small increase n   
     or use Pade approximation (PA) 
 
 
 
** (German, 2011) 
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Approximations of Π u
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Approximations of Π u

 PADE approximation (AP) to cancel all unstable   
poles 
 
 Delays in      replaced by Pade approximation (of 
     order np )  
 Zeros (zi) generated cancel unstable poles (pi) 

within  a distance 
Tradeoff between np and    
      
 
 

Π

ε
ε
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Example 1 – large QAM (> 103 ) 
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Analytic
Lumped Delay approximation
Pade approximation
Pade approximation with truncation
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Example 2 – small QAM (�  10-3 ) 
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The original quadruple-tank process (QTP) 
 

 
            - voltages to pumps 
 
               - flow dividers 
 
             - outputs 

1 2,v v

1 2 0 1γ γ ∈, ( , )

1 2,h h

1 2

1 2

0 1
1 2

γ γ
γ γ

< + <

< + <

NMP      
MP         



26 26 Z.J. Palmor 26 

The quadruple-tank process  with dead-
times (QTPwDT)  
 
               - voltages to pumps 
 
               - flow dividers 
 
             - outputs 
 
 
 Linearized plant: 
 
 
 
 
 

1 2,u u

1 2 0 1γ γ ∈, ( , )

( ) ( ) ( )
( ) ( )
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Depend on β and G(0) where 
 
               
 
 
 
   

 
 
 
 
  
 
 
 
* (Shneiderman & Palmor, 2010) 
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Properties of QTPwDT* 
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Experimental set-up 
 
 
               
 
 
  

 
 
 

  
 
 
 
 
 

 Gear pumps: 
Capacity -2.3 [lit/min] 
Voltage  -3:12 [V] 
Gain – ki [cm3/(s.V)] 

Tanks 
Height – 23 [cm] 
Cross section – Ai [cm2] 
Cross section outlet: ai [cm2] 
   - voltage deviders 

 
Servo control on each pump. 

 

iγ

Pumps 

Flowmeters 

Tanks 
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Experimental set-up 
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Modeling and  data 
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Control Design 
 
 
               
 
 
  

 
 
 

  
2x2 Process with adobe I/O delays + a common delay hc 

 
 K(s) either FASP or GMDC 

 
Controllers implemented via Simulink on dSPACE card 
 
 
 
 

Standard configuration: 
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 FASP -H2 Design 
 
 
               
 
 
  

 
 
 

  
 
 
 
 
weights added for performance and for guaranteeing 
solvability 

Generelized control problem: 
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 FASP - H2 Control Design 
 
 
               
 
 
  

 
 
 

  
 
 
 
Find internally stabilizing causal K(s) that minimizes 

Generelized control problem: 
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 GMDC Design 
 
Primary controller – a diagonal PI 
 
tuned to have either similar closed-loop bandwidth 
or similar control effort as the corresponding FASP 
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 Experimental cases 
 
1) Cases with adobe I/O DTs + a common DT 

 
a A MP case 
b A NMP case 

 
2) Cases with partial DT extraction 

 
 Implementation of FASP: 
 Primary controller truncated 
 FF blocks approximated through PA 
 Predictor blocks approximate via LDA  
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 Experimntal results 
 
 
               
 
 
 Fasp: 
 
 
 
 
  GMDC: 

: MP casea1Case  
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Case 1a - servo 
Experiment Simulation 

Z.J. Palmor 

Responses to Step Change in References 

r(t)= [1(t-10)  0]T 

r(t)= [0  1(t-10) ]T 
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Case 1a – Disturbance attenuation 
Experiment Simulation 

Z.J. Palmor 

d(t)= [1(t-10)  0]T 

d(t)= [0  1(t-10) ]T 
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 Experimntal results 
 
 
               
 
 
 Fasp: 
 
 
 
 
  GMDC: 

 
 
 
 

: NMP caseb1Case  
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Case 1b - servo 
Liquid heights Control effort 

Z.J. Palmor 

Responses to Step Change in References 

r(t)= [0  1(t-10) ]T 

r(t)= [1(t-10)  0]T 
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Case 1b – Disturbance attenuation 

Z.J. Palmor 

d(t)= [1(t-10)  0]T 

d(t)= [0  1(t-10) ]T 

Liquid heights Control effort 



42 42 Z.J. Palmor 42 

 Experimental results 
2)  5 MP and 5 NMP Cases with full/partial DT extraction 
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 Experimental results - MP cases 
 

 
          

 
 

  
 
 



44 44 Z.J. Palmor 44 

 Experimental results – NMP cases 
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 The FASP controller has been designed , implemented and 

applied to a laboratory QTPwDT setup. 
 

 The study demonstrates: 
FASP implementation is feasible 
FASP’s rational primary controller may be truncated 

significantly with out  performance degradation. 
FIR blocks may be approximated  either via the LDA or 

via PADE approximation. The QAM defined. 
FASP outperforms GMDC in both setpoint tracking and 

disturbance rejection. Holds even in the more general 
DTs cases particularly for disturbance rejection. 

   

  Summary and Conclusions 
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Thank you for your 
 attention! 
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