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Motivation

Robust control of linear systems with large
polytopic-type uncertainties is based on solving
LMIs with some common decision variables.

The requirement for common DVs over the
uncer. polytope leads to conservative results.

The idea is to reduce this conservatism by
dividing the polytope by partially overlapping
regions and to assign each region to a
subsystem.

A switching is then applied according to a
measurement that indicates which subsystem is
active.



Motivation

Applying the method we developed for robust
stabilization and control of SLSWDL, a design
method is suggested that achieves results that
are better than Quadratic and/or GS designs.
The stability, L2 -gain , and S-F control of
SLSWDL is considered.

Switched systems are encountered in systems
whose working conditions change very rapidly
from time to time.

A realistic case is where there is a minimum time
period, the dwell time (DT), during which no
switching occurs.



Motivation

It was shown that, at least for some systems, the
worst case switching law obeys some DT
constraint (Margaliot and Langholz 2003).
We shall apply switching to improve robust
designs of systems without switching.
A switching dependant Lyapunov function is
used.
We use the idea of (Boyarski and Shaked 2009).
We specifically demand that the Lyapunov
function will be non-increasing at the switching
instances.
A bounding method is then presented that
bounds the L2 -gain of the system.



SLSWDL

We consider the system:

ẋ = Aσ(t)x(t), x(0) = x0 (1)

The σ(t) is the switching law that satisfies:
τh+1− τh ≥ T, ∀h ≥ 1 where DT= T, and
the switching instants are τ1, τ2, ....
and where Ai ∈ Rn×n, i = 1, ...M is a stability
matrix which is assumed to reside in

Ωi={Ai|Ai=
N

∑
j=1

η j(t)A(j)
i ,

N

∑
j=1

η j(t)= 1, η j(t)≥0}



SLSWDL

The best stability result achieved for the nominal
case is of (Geromel and Colaneri 2006):
Lemma 1: Given that for some positive scalar T
there exist a collection of symmetric matrices
P1, P2, ...PM of compatible dimensions that satisfy
the following:

Pm >0 Pm Am+A′mPm <0, eA′mTPqeAmT−Pm < 0,
∀m = 1, ...M, q 6= m = 1, ...M

Then, the system is globally asymptotically stable
for DT≥ T.



SLSWDL

For uncertain systems, a simple conservative
method can be used.
Lemma 2: Assume that for some positive scalars
T, λ1, ...λM there exist a collection of symmetric
matrices P1, P2, ...PM of compatible dimensions such
that:

Pq >0, PqA(j)
q +A(j)′

q Pq+λqPq <0, e−λqTPq−Pm <0,
∀q = 1, ...M, m 6= q = 1, ...M ∀j = 1, ...N.

Then, the system is globally asymptotically stable
for DT≥ T.



Robust stability of SLSWDL

Lemma 3: Assume that for some time interval
t ∈ [t0, t f ], where δ = t f − t0 ∃ P1 and P2 > 0 that
satisfy the following:

P1, P2 > 0, P2−P1
δ + P1A + A′P1 < 0,

P2−P1
δ + P2A + A′P2 < 0.

Then, for the system ẋ = Ax the Lyapunov function

V(t)= x′(t)P(t)x(t), with P(t)= P1+(P2−P1)
t− t0

δ
is strictly decreasing over the time interval [t0, t f ].
The proof is by differentiating V(t), and taking into
account that P(t) is a convex combination of P1, P2

over [t0, t f ].



Robust stability of SLSWDL

The extension of the latter to polytopic uncertainty
is immediate, choosing the same P1 and P2 for all
the vertices of Ω.
We next present sufficient conditions for the
stability of a nominal linear switched systems.

These conditions are more conservative than those
presented in (Geromel and Colaneri 2006). They are
given, however, in terms of LMIs which are affine in
the systems matrices, and they can thus be easily
extended to the polytopic uncertainty case.



Robust stability of SLSWDL

Theorem 1: The nominal system (1) is asym.
stable for any switching law with DT≥ T > 0 if ∃:
a collection of Pi,k, i = 1, ...M, k = 0, ...K , where K
is an integer, chosen a priori, s.t. ∀i = 1, ...M the
following holds.

Pi,k > 0, T−1K(Pi,k+1−Pi,k)+Pi,k Ai + A′iPi,k < 0,
T−1K(Pi,k+1−Pi,k)+Pi,k+1Ai+A′iPi,k+1 <0, k=0, ...K−1

Pi,K Ai+A′iPi,K <0, Pi,K−Pl,0≥0, ∀ l 6= i.



Robust stability of SLSWDL

The LF would be

P(t) =

 Pi,k + K(Pi,k+1− Pi,k)
t−τh,k

T t ∈ [τh,k, τh,k+1)
Pi,K t ∈ [τh,K, τh+1,0)
Pi0,K t ∈ [0, τ1)

where i is the index of the subsystem that is active
at time t and h = 1, 2, ....
It follows then from the first 3 ineq. that V(t) is
strictly decreasing during the DT. The 4th LMI
guarantees that the LF is strictly decreasing for any
t ∈ [τh,K, τh+1,0]. In the switching instants, the 5th
LMI guarantees the decrease of the LF.



Robust stability of SLSWDL

The LMIs in Th. 1 are affine in the system matrices.
Therefore, if the subsystems entail polytopic
uncertainty, Th. 1 can provide solution to the
uncertain system if the conditions hold at the
vertices of all the subsystems.
In order to generalize, later, the above results to
stabilization via SF the following dualization is
required.



Robust stability of SLSWDL

Corollary 1: Assume that for T > 0 ∃
Qi,k, i = 1, ...M, k = 0, ...K, where K is a prechosen
integer, s.t., ∀ i = 1, ...M, and j = 1, ...N the
following holds:

Qi,k > 0, −K(Qi,k+1−Qi,k)
T + A(j)

i Qi,k + Qi,k A(j)′
i < 0,

−K(Qi,k+1−Qi,k)
T +A(j)

i Qi,k+1+Qi,k+1A(j)′
i <0, k=0, ...K−1

A(j)
i Qi,K + Qi,K A(j)′

i < 0, −Qi,K + Ql,0≥0,
∀ l = 1, ...i− 1, i + 1, ...M.

Then, the system (1) is globally asymptotically
stable for any switching law with DT≥ T.



L2 -gain

We consider the system:

ẋ(t) = Aσ(t)x(t) + B1, σ(t)w(t), x(0) = 0,
z(t) = C1, σ(t)x(t) + D11, σ(t)w(t) (2)

with the uncertainty polytope:

Ω̃i =
Ni

∑
j=1

η j(t)Ω̃(j)
i ,

Ni

∑
j=1

η j(t) = 1, η j(t) ≥ 0

where:

Ω̃(j)
i =

[
A(j)

i B(j)
1,i

C(j)
1,i D(j)

11, i

]
, i = 1, ...M.



L2 -gain

For H∞ control we consider the following system:

ẋ(t)= Aσ(t)x(t) + B1,σ(t)w(t) + B2,σ(t)u(t), x(0)=0,
z(t) = C1,σ(t)x(t) + D11,σ(t)w(t) + D12,σ(t)u(t),
y(t) = C2,σ(t)x(t) + D21,σ(t)w(t), (3)

with

Ω̄i =
Ni

∑
j=1

η j(t)Ω̄(j)
i ,

Ni

∑
j=1

η j(t) = 1, η j(t) ≥ 0

where,for i=1, ...M, j=1, ...Ni

Ω̄i =
[

Ai B1,i B2,i
C1,i D11,i D12,i

]
, and Ω̄(j)

i =
[

A(j)
i B(j)

1,i B(j)
2,i

C(j)
1,i D(j)

11,i D(j)
12,i

]
Ai is no longer required to be a stability matrix!



L2 -gain

Consider the following criterion for a prescribed γ:

J =
∫ ∞

0
(zTz− γ2wTw)dt ≤ 0, ∀ w ∈ L2

We denote
J̄ = limt→∞[V(t) +

∫ t
0 (zTz− γ2wTw)ds].

Where V(t) = xTP(t)x.
Since V(t) ≥ 0 ∀t, we have J ≤ J̄.
V(t) is differentiable for t ≥ 0, except for the
switching instances, and x(0)=0 thus:

limt→∞V(t) =
∞

∑
h=0

∫ τh+1

τh

V̇(t)dt +
∞

∑
h=1

(V(τh)−V(τ−h ))

where τ0 = 0.



L2 -gain

If V(t) is non increasing at the switching instances,
we find that V(τh)−V(τ−h ) ≤ 0 ∀ h > 0, and
then:

limt→∞V(t) ≤
∞

∑
h=1

∫ τh+1

τh

V̇(s)ds.

Denoting

J̃ = ∑∞
h=1

∫ τh+1
τh

V̇(s)ds +
∫ ∞

0 (zTz− γ2wTw)ds =
∑∞

h=1

∫ τh+1
τh

(V̇(s) + zTz− γ2wTw)ds

we obtain that: J ≤ J̄ ≤ J̃. Consequently, if J̃ ≤ 0
and the above LF does not increase at the switching
instants, then J < 0. We thus obtain the following.



L2 -gain

Theorem 2 (‘BRL’): The L2 -gain of the system
(2) with is < γ for DT≥ T if ∃ Pi,k, i = 1, ...M,
k = 0, ...K s.t. ∀ i = 1, ...M, and j = 1, ...N the
following holds.

Pi,k > 0,


K(Pi,k+1−Pi,k)

T +Pi,k A(j)
i +A(j)T

i Pi,k Pi,kB(j)
1,i C(j)T

1,i

∗ −γ2 I D(j)T
11,i

∗ ∗ −I

<0


K(Pi,k+1−Pi,k)

T +Pi,k+1 A(j)
i +A(j)T

i Pi,k+1 Pi,k+1B(j)
1,i C(j)T

1,i

∗ −γ2 I D(j)T
11,i

∗ ∗ −I

<0

k = 0, ...K− 1 Pi,K A(j)
i + A(j)T

i Pi,K Pi,KB(j)
1,i C(j)T

1,i

∗ −γ2 I D(j)T
11,i

∗ ∗ −I

<0

Pi,K − Pl,0 ≥ 0, ∀ l = 1, ...i− 1, i + 1, ...M.



Parameter dependant LF

Corollary 2: The L2 -gain of the system (2) is < γ

for DT≥ T if ∃ Ri, Hi, Q(j)
i,k = Q(j)T

i,k , i = 1, ...M,
k = 0, ...K s.t. ∀ i = 1, ...M, and j = 1, ...N the
following holds.

Q(j)
i,k > 0,

K(Qj
i,k−Qj

i,k+1)
T + Ψ(j)

i Q̄(j)
i,k + Ψ̄(j)

i RT
i C(j)T

1,i B(j)
1,i

∗ −Hi − HT
i HT

i C(j)T
1,i 0

∗ ∗ −γ2I D(j)
11,i

∗ ∗ ∗ −I

< 0

for Q̄j
i,k = Qj

i,k and Q̄j
i,k = Qj

i,k+1 k = 0, ...K− 1



Parameter dependant Lyapunov


Ψ(j)

i Q(j)
i,K + Ψ̄(j)

i RT
i C(j)T

1,i B(j)
1,i

∗ −Hi − HT
i HT

i C(j)T
1,i 0

∗ ∗ −γ2I D(j)
11,i

∗ ∗ ∗ −I

< 0

Qj
i,K −Qj

l,0 ≤ 0, ∀ l = 1, ...i− 1, i + 1, ...M.

where: Ψ(j)
i = RT

i A(j)T
i +A(j)

i Ri+B(j)
2,i Yi+YT

i B(j)T
2,i ,

Ψ̄(j)
i =−RT

i +A(j)T
i Hi.



SF control

Theorem 3: The L2 -gain of the system (3) is < γ

for DT≥ T if ∃ Yi, Ri, Q(j)
i,k = Q(j)T

i,k , i = 1, ...M,
k = 0, ...K, and a scalar ρ s.t. ∀ i = 1, ...M, and
j = 1, ...N the following holds.

Q(j)
i,k > 0,

K(Qj
i,k−Qj

i,k+1)
T +Ξ(j)

i Q̄(j)
i,k +Ξ̄(j)

i RT
i C(j)T

1,i +YT
i D(j)T

12,i B(j)
1,i

∗ −ρRi−ρRT
i ρRT

i C(j)T
1,i +ρYT

i D(j)T
12,i 0

∗ ∗ −γ2I D(j)
11,i

∗ ∗ ∗ −I

<0

for Q̄j
i,k = Qj

i,k and Q̄j
i,k = Qj

i,k+1 k = 0, ...K− 1



SF control


Ξ(j)

i Q(j)
i,K + Ξ̄(j)

i RT
i C(j)T

1,i +YT
i D(j)T

12,i B(j)
1,i

∗ −ρRi − ρRT
i ρRT

i C(j)T
1,i +ρYT

i D(j)T
12,i 0

∗ ∗ −γ2I D(j)
11,i

∗ ∗ ∗ −I

< 0

Qj
i,K −Qj

l,0 ≤ 0, ∀ l = 1, ...i− 1, i + 1, ...M.

where Ξ(j)
i = RT

i A(j)T
i +A(j)

i Ri+B(j)
2,i Yi+YT

i B(j)T
2,i ,

Ξ̄(j)
i =−RT

i +ρA(j)T
i Ri+ρB(j)

2,i Yi If a solution to the
latter inequalities exist, the state-feedback gain is
given by Gσ(t) = YσR−1

σ .



Application to robust control

Example (SF control):
We consider the problem of stabilizing and
attenuating disturbances acting on the longitudinal
short period mode of the F4E fighter aircraft with
additional canards (Petersen 1985).
The state space model is:

d
dt

Nz
q
δe

 =

 a11 a12 a13
a21 a22 a23
0 0 −30

Nz
q
δe

+

b1

0
30

 u+Iw

z = [Nz q u]T and y = [Nz q]T.
In this model, Nz is the normal acceleration, q is the
pitch rate and δe is the elevator angle.



Application to robust control

The parameters of the model for 4 OPs are:

O.P. Mach Altitude (ft) a11 a12 a13

1 .5 5000 −.9896 17.41 96.15
2 .9 35000 −.6607 18.11 84.34
3 0.85 5000 −1.702 50.72 263.5
4 1.5 35000 −.5162 29.96 178.9

O.P. Mach Altit. a21 −a22 −a23 −b1

1 .5 5000 .2648 .8512 11.39 97.78
2 .9 35000 .08201 .6587 10.81 272.2
3 0.85 5000 .2201 1.418 31.99 85.09
4 1.5 35000 −.6896 1.225 30.38 175.6



Application to robust control

It is assumed that between the OPs the parameters
are a convex combination of the 4 sets of the table.
4 design methods are presented: The 1st is a robust
controller with constant gain and quadratic LF
(Petersen 1985).
The 2nd is a GS controller with a quad. LF
(Apkarian and Gahinet 1995), and the 3rd and 4th
are switched controllers, deigned using Th. 3.
We design the switched controller by splitting the
parameters’ polytope into 4 regions as described in
Fig. 1.
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Figure: 1 The overlapping subpolytopes



Application to robust control

The above regions overlap, which allows some DT
between switching instances.
We use Th. 3 to design a switched SF controller
assuming σ(t) is measured online, and DT= 3 secs.
The results are:

Table: Values of γmin for the F4E aircraft

Method Quad. Robust GS K=1 K=10

γmin 3.85 3.85 const. 2.41 const. 2.22
γmin PDL 2.91 PDL 2.90 linear 2.26 linear 2.01

The improvement is due to the decreased size of the
polytopes.



Concluding Remarks

A new method for L2 -gain analysis of a
switched system using a switching dependent LF
is introduced which enables treatment of
polytopic type uncertainties.

This method is applied to the design of H∞ SF
control of systems with large uncertainties.

The SF control is based on constant SF gains (1
for each subsystem). Time-varying SF gains can
be obtained by letting Yi depend on k.

T was equally divided. Nonequal devision may
improve the results for the price of using BMIs.



Concluding Remarks

The method can be applied to the solution of
robust H∞ estimation problem where a filter of
general structure is sought.


