Dynamics and control of (bio-)robotic locomotion: Nonlinear, nonholonomic and hybrid mechanical systems

Yizhar Or
Faculty of Mechanical Engineering, Technion

Sweden-Israel 2nd Control Conference, Nov. 2013, Technion
Background and motivation

Locomotion: ability of creature/robot/vehicle to propel itself
= internal motion/actuation + physical interaction with environment

Research Goal: analyze simple models of locomotion
as dynamics and control systems

Theoretical challenges:
mechanical modeling, nonlinear dynamics, (non-)holonomic constraints, underactuation, geometric mechanics and symmetries, hybrid dynamics (contact transitions, impacts), orbital stability, optimization, control authority & sensing, control design
Outline

1. The Twistcar toy (Ofir Chakon, MSc work)

2. Microswimmers (Emiliya Gutman, PhD work)

3. Others: slippage effects on legged locomotion
 senior project - reverse a truck & trailer
Roller Racer

Twistcar - introduction

Planar two-link model

Previous works – “Roller Racer”

ϕ oscillates about π

Assumptions made:

kinematic control of $\phi(t)$

steering link has zero mass and nonzero inertia (???)

body = **point mass** at back axle (tipover!?)

Used geometric mechanics, studied periodic gaits
Our research goal:
Study both angle and torque input (harmonic)
For both Twistcar and Roller-Racer configurations

Analyze influence of parameters on dynamic behavior
Assume steering link w/ zero mass+inertia, point mass body
Methods: asymptotic analysis, numerics, simple experiments
Dynamic formulation

Coordinates: \(\mathbf{q} = (x, y, \theta, \phi) \), input: \(\tau(t) \) or \(\phi(t) \)

No-skid of wheels \(\implies \) two nonholonomic constraints

\[
\mathbf{W}(\mathbf{q}) \dot{\mathbf{q}} = 0, \quad \text{where} \quad \mathbf{W}(\mathbf{q}) = \begin{pmatrix}
\sin(\theta) & -\cos(\theta) & l_1 & 0 \\
\sin(\theta + \phi) & -\cos(\theta + \phi) & l_3 - l_2 \cos(\phi) & l_3
\end{pmatrix}
\]
Dynamic formulation

Coordinates: \(q=(x,y,\theta,\phi) \), input: \(\tau(t) \) or \(\phi(t) \)

No-skid of wheels \(\rightarrow \) two nonholonomic constraints

\[
W(q)\dot{q} = 0, \quad \text{where} \quad W(q) = \begin{pmatrix} \sin(\theta) & -\cos(\theta) & l_1 & 0 \\ \sin(\theta+\phi) & -\cos(\theta+\phi) & l_3-l_2\cos(\phi) & l_3 \end{pmatrix}
\]

Constrained dynamic equations:

\[
M(q)\ddot{q} + B(q,\dot{q}) = E\tau + W(q)^T\lambda
\]

where \(M(q) = \begin{pmatrix} m & 0 & 0 & 0 \\ 0 & m & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \), \(B(q,\dot{q}) = 0 \), \(E = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \), \(\lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \) constraint forces
Dynamic formulation

Coordinates: \(q=(x,y,\theta,\phi) \), input: \(\tau(t) \) or \(\phi(t) \)

No-skid of wheels \(\implies \) two nonholonomic constraints

\[
 W(q) \dot{q} = 0 , \quad \text{where} \quad w(q) = \begin{pmatrix} \sin(\theta) & -\cos(\theta) & l_1 & 0 \\ \sin(\theta+\phi) & -\cos(\theta+\phi) & l_3 - l_2 \cos(\phi) & l_3 \end{pmatrix}
\]

Constrained dynamic equations:

\[
 M(q) \ddot{q} + B(q, \dot{q}) = E \tau + W(q)^T \lambda
\]

State-space formulation

\[
 \dot{x}(t) = f(x, \tau) \quad \text{where} \quad x = (q, \dot{q})^T
\]

Differentiate the constraints:

\[
 \dot{W}q + W\ddot{q} = 0
\]

\[
 \begin{pmatrix} M & -W^T \\ W & 0 \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \lambda \end{pmatrix} = \begin{pmatrix} E \tau \\ -\dot{W}q \end{pmatrix} \quad \text{zero mass + inertia } \implies M(q) \text{ is singular (avoided in previous works) but } A(q) \text{ is not!}
\]

Angle input: \(\phi(t), \dot{\phi}(t), \ddot{\phi}(t) \) are known, \(\tau(t) \) is eliminated
Simulation results 1 (movie)

1. Twistcar, steering angle input $\phi(t) = \phi_o \sin(\omega t)$

Forward motion, diverging oscillations of body orientation
Simulation results 2 (movie)

2. Twistcar, torque input $\tau(t) = \tau_0 \sin(\omega t)$

Forward motion, decaying oscillations of body orientation + steering angle \implies straight line motion
Simulation results 3 (movie)

3. Roller-Racer, angle input $\phi(t) = \pi + \phi_0 \sin(\omega t)$

Backward motion, diverging oscillations of body orientation
Simulation results 4 (movie)

4. Roller-Racer, angle input, different c.o.m. + lengths ratio

Reversed direction of motion,
diverging oscillations of body orientation
Simulation results 5 (movie)

5. Roller-Racer $\phi(0) = \pi$, torque input $\tau(t) = \tau_0 \sin(\omega t)$

Steering angle converges to oscillations about $\phi=0$
\implies back to Twistcar configuration
Twistcar - Analysis

Reduced formulation:

1. Normalize time by $1/\omega$, length by l_1+l_2, mass by m

 two nondimensional parameters: $\alpha = \frac{l_3}{l_1+l_2}$, $\beta = \frac{l_1}{l_1+l_2}$

2. Body velocities $\mathbf{v} = (v_x, v_y, \dot{\theta}, \dot{\phi})^T$, constraints $\mathbf{w}(q)\dot{q} = 0 \Rightarrow \ddot{\mathbf{w}}(\phi)\mathbf{V} = 0$

3. Constrained velocities $\mathbf{V} = w_v(\phi)v + w_u(\phi)u$, where $\ddot{\mathbf{w}}_u = \ddot{\mathbf{w}}_u = 0$

4. Reduced equations:

 $\dot{v} = f_v(\phi)v^2 + f_u(\phi)u^2 + f_{uv}(\phi)uv + f_\tau(\phi)\tau$

 $\dot{u} = g_v(\phi)v^2 + g_u(\phi)u^2 + g_{uv}(\phi)uv + g_\tau(\phi)\tau$

 $\dot{\phi} = h(\phi)u$
Twistcar - Analysis

Reduced formulation:

1. Normalize time by $1/\omega$, length by l_1+l_2, mass by m
 two nondimensional parameters: $\alpha = \frac{l_3}{l_1+l_2}$, $\beta = \frac{l_1}{l_1+l_2}$

2. Body velocities $V = (v_x, v_y, \dot{\theta}, \dot{\phi})^T$, constraints $\dot{w}(q)q = 0 \Rightarrow \ddot{w}(\phi)V = 0$

3. Constrained velocities $V = w_v(\phi)v + w_u(\phi)u$, where $\ddot{w}_u = \ddot{w}_v = 0$

 motion along w_v

$\phi = \text{const.}$

 motion along w_u

$\dot{\phi} \neq 0$.
Twistcar - Analysis

Reduced formulation:

1. Normalize time by $1/\omega$, length by l_1+l_2, mass by m

 two nondimensional parameters: $\alpha = \frac{l_3}{l_1+l_2}$, $\beta = \frac{l_1}{l_1+l_2}$

2. Body velocities $\mathbf{v} = (v_x, v_y, \dot{\theta}, \dot{\phi})^T$, constraints $\mathbf{w}(q)\dot{q} = 0 \Rightarrow \tilde{\mathbf{W}}(\phi)\mathbf{V} = 0$

3. Constrained velocities $\mathbf{V} = \mathbf{w}_v(\phi)v + \mathbf{w}_u(\phi)u$, where $\tilde{\mathbf{W}}_v = \tilde{\mathbf{W}}_u = 0$

4. Reduced equations:

 $\dot{v} = f_v(\phi)v^2 + f_u(\phi)u^2 + f_{uv}(\phi)uv + f_{\tau}(\phi)\tau$
 $\dot{u} = g_v(\phi)v^2 + g_u(\phi)u^2 + g_{uv}(\phi)uv + g_{\tau}(\phi)\tau$
 $\dot{\phi} = h(\phi)u$

5. Angle input: $\phi(t), \dot{\phi}(t), \ddot{\phi}(t) \rightarrow u(t), \dot{u}(t)$ known, eliminate τ

 \Rightarrow single linear time-varying ODE (integrable):

 $\dot{v} = F\left(\phi(t), \dot{\phi}(t)\right)v + G\left(\phi(t), \dot{\phi}(t), \ddot{\phi}(t)\right)$
Perturbation expansion

Angle input: $\phi(t) = \varepsilon \sin t$, where $\varepsilon \ll 1$

Assume a solution of the form $v(t) = v_0(t) + \varepsilon v_1(t) + \varepsilon^2 v_2(t) + ...$

Expand $\dot{v} = F(\phi, \dot{\phi})v + G(\phi, \dot{\phi}, \ddot{\phi})$ as series in $\phi, \dot{\phi}, \ddot{\phi}$, then of ε

Solution: $v(t) = v_0 + \varepsilon^2 \left(\frac{\alpha \beta (\alpha + \beta)}{2(1 - \alpha)^3} t + A_1(\alpha, \beta) \sin(2t) + A_2(\alpha, \beta) v_0 (1 - \cos(2t)) \right) + O(\varepsilon^3)$

Acceleration is monotonic in α, β, vanishes at $O(\varepsilon^2)$ for $\beta = 0$.

Plug solution into $\dot{\phi} = h(\phi)u$, then $V = w_u(\phi)v + w_v(\phi)u$, expand...
Perturbation expansion

Angle input: $\phi(t) = \varepsilon \sin t$, where $\varepsilon \ll 1$

Assume a solution of the form $v(t) = v_0(t) + \varepsilon v_1(t) + \varepsilon^2 v_2(t) + ...$

Expand $\dot{v} = F(\phi, \dot{\phi})v + G(\phi, \dot{\phi}, \ddot{\phi})$ as series in $\phi, \dot{\phi}, \ddot{\phi}$, then of ε

Solution: $v(t) = v_0 + \varepsilon^2 \left(\frac{\alpha \beta (\alpha + \beta)}{2(1 - \alpha)^3} - A_1(\alpha, \beta) \sin(2t) + A_2(\alpha, \beta) v_0 (1 - \cos(2t)) \right) + \mathcal{O}(\varepsilon^3)$

Acceleration is monotonic in α, β, vanishes at $\mathcal{O}(\varepsilon^2)$ for $\beta = 0$.

Plug solution into $\dot{\phi} = h(\phi)u$, then $V = w_u(\phi)v + w_v(\phi)u$, expand...

$$\theta(t) = \varepsilon \left(v_0 (1 - \cos t) - \frac{\alpha}{\alpha - 1} \sin t \right) + \varepsilon^3 \left[B_0(\alpha, \beta) t \cos t + B_1(\alpha, \beta) \sin t + B_2(\alpha, \beta) \sin(3t) + B_3(\alpha, \beta) v_0 (8 - 9 \cos(t) + \cos(3t)) \right] + \mathcal{O}(\varepsilon^4)$$

$\Rightarrow \mathcal{O}(\varepsilon^3)$ divergence of body orientation angle
Roller-Racer motion reversal

Angle input: \(\phi(t) = \pi + \epsilon \sin t \), where \(\epsilon \ll 1 \). Expand, solve...

\[
v_x(t) = -(\alpha + 1)v_0 + \epsilon^2 \left[C_0(\alpha, \beta)v_0 + \frac{\alpha \beta(\alpha - \beta)}{2(\alpha + 1)^2} t \right] + C_1(\alpha, \beta)\sin(2t) + C_2(\alpha, \beta)v_0 \cos(2t) + O(\epsilon^3)
\]

Direction of acceleration \(a \) depends on \(\text{sgn}(\alpha - \beta) \):

Non-degenerate optimum of \(|a| \):

For given \(\beta \): \(\alpha = \frac{\beta}{\beta + 2} \)

For given \(\alpha \): \(\beta = \frac{\alpha}{2} \)
Torque input - analysis

Reduced state equations:
\[
\begin{align*}
\dot{v} &= f_v(\phi)v^2 + f_u(\phi)u^2 + f_{uv}(\phi)uv + f_\tau(\phi)\tau \\
\dot{u} &= g_v(\phi)v^2 + g_u(\phi)u^2 + g_{uv}(\phi)uv + g_\tau(\phi)\tau \\
\dot{\phi} &= h(\phi)u
\end{align*}
\]

Perturbation expansion:
\[
\begin{align*}
v(t) &= v_0(t) + \varepsilon v_1(t) + \varepsilon^2 v_2(t) + O(\varepsilon^3) \\
u(t) &= \varepsilon u_1(t) + \varepsilon^2 u_2(t) + O(\varepsilon^3) \\
\phi(t) &= \varepsilon \phi_1(t) + \varepsilon^2 \phi_2(t) + O(\varepsilon^3)
\end{align*}
\]

Zero-order dynamics: \(\dot{v}_0(t) = 0 \quad \Rightarrow \quad v_0 = \text{const.} \)

First-order dynamics:
\[
\begin{bmatrix}
\dot{v}_1 \\
\dot{u}_1 \\
\dot{\phi}_1
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 \\
0 & \alpha^2 + \alpha \beta - \alpha - \beta & \frac{1}{\alpha \beta} v_0 \\
0 & -(\alpha - 1)^2 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
u_1 \\
\phi_1
\end{bmatrix}
+ \begin{bmatrix}
0 \\
-\frac{1}{\alpha^2 \beta^2} \\
0
\end{bmatrix} \sin(t)
\]

Solution contains transient terms of \(e^{\lambda_i t} + \text{terms of } \sin(t+\psi) \)

Negative real eigenvalues \(\lambda_{1,2} \) and \(\lambda_3 = 0 \quad \Rightarrow \text{decay to steady-state} \)
(neutral stability of free system due to energy conservation)
Steady-state solution:

\[
v(t) = v_0 + \varepsilon^2 \left[\frac{(1 - \alpha)(\alpha + \beta)}{2\alpha\beta((\alpha - 1)^2 v_0^2 + \alpha^2)((\alpha - 1)^2 v_0^2 + \beta^2)} t \right. \\
+ C_1(\alpha, \beta, v_0)(\cos(2t) - 1) + C_2(\alpha, \beta, v_0)\sin(2t) \left. \right] + O(\varepsilon^3)
\]

\[
\theta(t) = \varepsilon \left[-\frac{(\alpha - 1)((\alpha^2 v_0^2 - 2\alpha v_0^2 - \alpha\beta + v_0^2)(\alpha - 1) + \alpha(\alpha^2 + \alpha\beta - \alpha - \beta))v_0}{\alpha\beta((\alpha - 1)^2 v_0^2 + \alpha^2)((\alpha - 1)^2 v_0^2 + \beta^2)} (\cos(t) - 1) \\
+ \frac{(\alpha - 1)((\alpha - 1)(\alpha^2 + \alpha\beta - \alpha - \beta)v_0^2 - \alpha(\alpha^2 v_0^2 - 2\alpha v_0^2 - \alpha\beta + v_0^2))}{\alpha\beta((\alpha - 1)^2 v_0^2 + \alpha^2)((\alpha - 1)^2 v_0^2 + \beta^2)} \sin(t) \right] + O(\varepsilon^2)
\]

"Initial" speed \(v_0\) should be updated - \(\bar{v}(t)\) grows with time

Oscillation amplitude of \(\theta(t)\) depends on \(v_0\)

\[\rightarrow \text{decays as } \frac{1}{\bar{v}(t)^2} \implies \text{straight line motion}\]
Roller-racer torque input

Torque \(\tau(t) = \varepsilon \sin t \), expansion about \(\phi = \pi \)

First-order dynamics:

\[
\begin{bmatrix}
\dot{v}_1 \\
\dot{u}_1 \\
\dot{\phi}_1
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & 0 \\
0 & \frac{\alpha^2 - \alpha \beta + \alpha - \beta}{\alpha \beta} & -\frac{1}{\alpha \beta} v_0 \\
0 & -(\alpha + 1)^2 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
u_0 \\
\phi_1
\end{bmatrix}
+ \begin{bmatrix}
0 \\
-\frac{1}{\alpha^2 \beta^2} \\
0
\end{bmatrix} \varepsilon \sin(t)
\]

Characteristic polynomial of linearization matrix:

\[
\lambda^3 - \frac{\alpha^2 + \alpha \beta - \alpha - \beta}{\alpha \beta} v_0 \lambda^2 - \frac{(\alpha + 1)^2}{\alpha \beta} v_0^2 \lambda = 0
\]

\[\Rightarrow \phi = \pi \text{ is unstable for any sign of } v_0\]
Preliminary experiments (movies)

VEX robotics kit.
Steering angle input by servo motor, triangular wave.

1. Twistcar
2. Roller-Racer backwards
3. Roller-Racer reversal
Future extensions

Improved experiments - measurements, torque control
Effects of wheels slippage → hybrid dynamics
stick-slip transitions (3D model, effect of c.o.m. height)
Control – path stabilization (hybrid control law?)
Outline

1. The Twistcar toy (Ofir Chakon, MSc work)

2. Microswimmers (Emiliya Gutman, PhD work)

3. Others: slippage effects on legged locomotion
 senior project - reverse a truck & trailer
Microswimmers – intro

Swimming microorganisms [Taylor, 1951]
Low Reynolds num. hydrodynamics – viscosity \(\gg\) inertia
Simplistic theoretical models:
3-spheres, pushmepullyou, Purcell’s 3-link swimmer...
Studied nonlinear controllability, geometric mechanics
Swimming microorganisms [Taylor, 1951]
Low Reynolds num. hydrodynamics – viscosity \gg inertia
Simplistic theoretical models:
3-spheres, pushmepullyou, Purcell’s 3-link swimmer...
Studied nonlinear controllability, geometric mechanics
All assume: unbounded fluid, kinematic shape control

My works: wall effects, torque input, elastic tail, robot
Magnetic microswimmers

For biomedical applications, magnetic actuation

Helical rigid tail, rotating magnetic field:

Zhang et al 2009
Ghosh and Fischer 2009

Flexible tail, rotating/oscillating magnetic field:

Dreyfus et al 2005
Gao et al 2010
Pak et al 2011

Nelson’s planar undulating 2-link and 3-link magnetic swimmer

Optimal frequency \(\omega \) for speed \(V \) or scaled \(V/\omega \sim \) displacement \(X \)
Magnetic microswimmers

Optimal frequency ω for speed V or scaled $V/\omega \sim$ displacement X
Planar undulating two-link model

Coordinates of the swimmer: \(\mathbf{q} = (\mathbf{q}_b^T, \phi)^T \)
where \(\mathbf{q}_b = (x, y, \theta)^T \) – body position,
\(\phi \) – swimmer's shape
Passive torsion spring at the joint: \(\tau = -k\phi \)
(\(\tau \) - torque, \(k \) - torsional stiffness)

Two magnetic dipoles: \(h_1, h_2 \) aligned with the links' longitudinal axes \(\mathbf{t}_i \)
External magnetic field: \(\mathbf{B}(t) = B_x \left[1, \varepsilon \sin(\omega t) \right]^T \)
Aligning magnetic torque on the \(i^{th} \) link: \(\mathbf{M}_i = h_i \mathbf{t}_i \times \mathbf{B} \)

Stokes Equations \((Re=0)\): \(\nabla \cdot \mathbf{u} = 0, \quad -\nabla p + \mu \nabla^2 \mathbf{u} = 0 \)
Linear relation between viscous forces and velocities (resistance)
Dynamics – formulation (movie)

Resistive Force Theory (Cox 1970, Gray & Hancock 1955):

\[f_i = -c_i(t(v_i \cdot t_i)) - c_n(t(v_i \cdot n_i)) \]

Kinematic relations – express velocities in terms of Quasistatic motion – each link is in force+torque balance

Dynamic equations:

Simulation example:

\[\omega_i^{(n+1)} = 2 \ln(\omega_i^{(n)}) \]

\[l_{cc} c_l a_q \]

\[q_{A q C q B} D_{q E B} \]

\[(0) = 0, l = 1, k = 0.3, h_1 = 0, h_2 = 1, B = 1, \varepsilon = 0.4 \text{ and } \omega = 1 \]
Analysis

Two characteristic time scales:

1. Visco-magnetic time – magnetic alignment of a single link

\[h_1 = 0, h_2 \neq 0, \mathbf{B} = \begin{bmatrix} B_x \\ 0 \end{bmatrix}, \phi = 0 \Rightarrow \dot{\theta} = -\frac{1}{t_m} \sin \theta \Rightarrow \theta \approx \theta_0 e^{-t/t_m}, \quad t_m = \frac{4 c_I l^3}{3 B_x h_2} \]

2. Visco-elastic time – alignment of elastic joint

\[h_1 = 0, h_2 = 0, \mathbf{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, k > 0 \Rightarrow \dot{\phi} = -\frac{1}{2 t_k} \frac{3 + \cos \phi}{3 - \cos \phi} \phi \approx \phi_0 e^{-t/t_k}, \quad t_k = \frac{c_I l^3}{12 k} \]

Scale time by \(t_m \),
define two non-dimensional parameters: \(\alpha = \frac{t_m}{t_k}, \beta = \frac{h_1}{h_2} \)

Three cases:

I. \(h_1 = 0, h_2 \neq 0, k \neq 0 \Rightarrow \beta = 0 \)
II. \(h_1 \neq 0, h_2 \neq 0, k = 0 \Rightarrow \alpha = 0 \)
III. \(h_1 \neq 0, h_2 \neq 0, k \neq 0 \Rightarrow \alpha \neq 0, \beta \neq 0 \)
Perturbation expansion

Assume small amplitude oscillations of \(B_y(t) \), \(\varepsilon \ll 1 \)

Expand \(q(t) = \varepsilon q_1(t) + \varepsilon^2 q_2(t) + \varepsilon^3 q_3(t) + ... \)

Dynamics depend only on angles \(\theta, \phi \). First-order system:

\[
\begin{bmatrix}
 \dot{\theta}_1(t) \\
 \dot{\phi}_1(t)
\end{bmatrix} =
\begin{bmatrix}
 -5\beta + 3 & 0.5\alpha + 3 \\
 8\beta - 8 & -\alpha - 8
\end{bmatrix}
\begin{bmatrix}
 \theta_1(t) \\
 \phi_1(t)
\end{bmatrix} +
\begin{bmatrix}
 5\beta - 3 \\
 -8\beta + 8
\end{bmatrix}\sin(\omega t)
\]

Solution is of the form: \(C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + C_3 \sin(\omega t + \varphi) \)

Stability conditions: \(\text{Re}(\lambda_1, \lambda_2) < 0 \rightarrow \alpha + 5\beta + 5 > 0 \) and \(\alpha + 16\beta + \alpha\beta > 0 \)

Case I: \(\beta = 0 \Rightarrow \alpha > 0 \); Case II: \(\alpha = 0 \Rightarrow \beta > 0 \)

Case III: \(\alpha, \beta \neq 0 \Rightarrow \alpha \) can be negative \(\Rightarrow \) destabilizing torsion spring \(\beta \) can be negative \(\Rightarrow \) opposite links' magnetization
Perturbation expansion

Stability conditions: \(\text{Re}(\lambda_1, \lambda_2) < 0 \rightarrow \alpha + 5\beta + 5 > 0 \) and \(\alpha + 16\beta + \alpha\beta > 0 \)

Case I: \(\beta = 0 \Rightarrow \alpha > 0 \); Case II: \(\alpha = 0 \Rightarrow \beta > 0 \)

Case III: \(\alpha, \beta \neq 0 \Rightarrow \alpha \) can be negative \(\Rightarrow \) destabilizing torsion spring
\(\beta \) can be negative \(\Rightarrow \) opposite links' magnetization
Leading-order solution

The second order equation for the forward motion $x(t)$:

$$\ddot{x}_2 = \frac{l}{2} \left[-(\beta + 1)\theta_{(1)}^2 - \left(\frac{1}{4} \alpha + 3 \right) \phi_{(1)}^2 + (\beta - 4)\theta_{(1)}\phi_{(1)} + ((\beta + 1)\theta_{(1)} + (-\beta + 3)\phi_{(1)}) \sin(\omega t) \right]$$

The steady state solution is of the form:

$$x_{(2)}(t) = M(\omega, \alpha, \beta) \sin(2\omega t + \varphi(\omega, \alpha, \beta)) + \ddot{V}(\omega, \alpha, \beta)t \quad \text{Net forward motion}$$

The average speed and the net displacement per cycle (leading-order):

\[
\begin{align*}
X &= \frac{2\pi \omega (1 - \beta)(\alpha + 16\beta + \alpha\beta)}{\omega^4 + (\alpha^2 + 8\alpha\beta + 8\alpha + 25\beta^2 + 18\beta + 25)\omega^2 + \alpha^2\beta^2 + 2\alpha^2\beta + \alpha^2 + 32\alpha\beta^2 + 32\alpha\beta + 256\beta^2} \\
V &= \frac{X}{2\pi / \omega} = \\
&= \frac{\omega^2 (1 - \beta)(\alpha + 16\beta + \alpha\beta)}{\omega^4 + (\alpha^2 + 8\alpha\beta + 8\alpha + 25\beta^2 + 18\beta + 25)\omega^2 + \alpha^2\beta^2 + 2\alpha^2\beta + \alpha^2 + 32\alpha\beta^2 + 32\alpha\beta + 256\beta^2}
\end{align*}
\]
Optimal actuation frequency

For X the optimal frequency ω_x is:

$$\omega_x = \frac{1}{\sqrt{6}} \left(-\left(\alpha^2 + 8\alpha \beta + 8\alpha + 25\beta^2 + 18\beta + 25 \right)^{\frac{1}{3}} + \left(\alpha^2 + 8\alpha \beta + 8\alpha + 25\beta^2 + 18\beta + 25 \right)^{\frac{2}{3}} + 12\left(\alpha^2 \beta^2 + 2\alpha^2 \beta + \alpha^2 + 32\alpha \beta^2 + 32\alpha \beta + 256 \beta^2 \right) \right)^{\frac{1}{3}}$$

For V the optimal frequency ω_v is:

$$\omega_v = \sqrt{\alpha + 16\beta + \alpha \beta}$$

$l=1$, $k=0.3$, $h_1=0$, $h_2=1$, $B_x=1$, $\varepsilon=0.4$ and $\omega=1$
Optimal swimmer’s parameters

- Case I ($\beta=0$) the optimal value of V is: $V\left(\omega_v = \sqrt{5}, \alpha_v = 5\right) = 0.05\epsilon^2 \frac{l}{t_m}$
- Case II ($\alpha=0$) the optimal value of V is: $V\left(\omega_v = \frac{4}{\sqrt{3}}, \beta_v = \frac{1}{3}\right) = 0.08\epsilon^2 \frac{l}{t_m}$
Optimal swimmer’s parameters

- For case III ($\alpha, \beta \neq 0$) the optimal value of V is:

$$V\left(\omega_v = 1.81922, \alpha_v = -2.7, \beta_v = 0.45197\right) = 0.0873\varepsilon^2 \frac{l}{t_m}$$

Optimum is obtained at $\alpha < 0 \rightarrow$ destabilizing spring
Destabilizing “torsion spring”

\[\tau(\phi) = -\frac{1}{2} \tilde{k} b (l_0 - 2b) \phi + O(\phi^3) \]

- \(l_0 < 2b \) \(\phi = 0 \) is unstable (spring in tension)
- \(l_0 > 2b \) \(\phi = 0 \) is stable (spring in compression)

Can one manufacture this in a real micron-size swimmer??
Comparison to real swimmers

<table>
<thead>
<tr>
<th>Microswimmer</th>
<th>L (μm)</th>
<th>ε = by / bx</th>
<th>X* / ε²L</th>
<th>fₓ (Hz)</th>
<th>V* / ε²L₀fₓ</th>
<th>fᵥ (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dreyfus et al [1]</td>
<td>24</td>
<td>10.3/8.9 = 1.16</td>
<td>0.068</td>
<td>10</td>
<td>0.031</td>
<td>4</td>
</tr>
<tr>
<td>Pak et al [2]</td>
<td>5.8</td>
<td>10/9.5 = 1.05</td>
<td>0.149</td>
<td>15</td>
<td>0.093</td>
<td>35</td>
</tr>
<tr>
<td>Our model</td>
<td>2l</td>
<td></td>
<td>0.31</td>
<td></td>
<td>ωₓ → 0</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Reported experimental values of maximal displacement and speed are below the optimal values according to our theoretical model, yet they are in the same order of magnitude.

Current work with B. Nelson at ETH:
Match time scales tₘ, tₖ to experimental microswimmer prototype
Test the theoretical predictions of optimal frequency + parameters

What’s the relation of all this to CONTROL???
Outline

1. The Twistcar toy (Ofir Chakon, MSc work)

2. Microswimmers (Emiliya Gutman, PhD work)

3. Others: slippage effects on legged locomotion
 senior project - reverse a truck & trailer
Slippage in legged locomotion

Benny Gamus, Moti Moravia (MSc works)

Dynamic legged locomotion – nonlinear hybrid system
Control of legged robots – widely studied
Passive dynamic walking – classical models (rigid links)

All models assume sticking contact at feet (high friction)

Our works: studied the effects of slippage under Coulomb friction model on performance (stability, speed, energetic efficiency)
Reverse of LEGO truck & trailer

Senior thesis project of Iddo Perel and Hallel Bunis

Stabilize truck & trailer(s) in reverse

Nonholonomic, driftless nonlinear control system

Linearization about straight line, control input is ω/v

State feedback / nested control loops

Implementation in LEGO NXT, controlled by Simulink
Reverse of LEGO truck & trailer

movie
Thank You
תודה
Questions??
questions??