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Satellite Navigation
Overview

•   Solving for receiver location based on perfect range
measurements from two satellites
•   Solving for receiver location based on noisy range
measurements from two satellites (no filtering)
•   Improvements with linear filtering of range
•   Using extended Kalman filter
•   Using extended Kalman filter with measurements from only one
satellite
•   Moving receiver

-   Constant velocity
-   Variable velocity
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Solving for Receiver Location Based on Perfect
Range Measurements From Two Satellites
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Two Satellites Making Range Measurements to a
Receiver

R1 R1 R2R2

(x, y)

Known position

Unknown location
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Satellite to Receiver Geometry-1

r1 = (xR1 - x)2 + (yR1 - y)2

Range from each satellite to receiver

r2 = (xR2 - x)2 + (yR2 - y)2

2 equations with 2 unknowns

Squaring both sides of each equation

r1
2 = xR1

2  - 2xR1x + x2 + yR1
2  - 2yR1y + y2

Solve for receiver location

r2
2 = xR2

2  - 2xR2x + x2 + yR2
2  - 2yR2y + y2

Subtracting second equation from first and combining terms

r1
2 - r2

2 = 2x(xR2 - xR1) + 2y(yR2 - yR1) + xR1
2  + yR1

2  - xR2
2  - yR2

2

Solving for x

x = - 
y(yR2 - yR1)

(xR2 - xR1)
 + 

r1
2 - r2

2 - xR1
2

 - yR1
2  + xR2

2  + yR2
2

2(xR2 - xR1)
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Satellite to Receiver Geometry-2
By defining

A = - 
(yR2 - yR1)

(xR2 - xR1)

B = 
r1
2 - r2

2 - xR1
2

 - yR1
2  + xR2

2  + yR2
2

2(xR2 - xR1)

We get
x = Ay + B

Substituting into square of first range equation yields
r1
2 = xR1

2  - 2xR1(Ay + B) + (Ay + B)2 + yR1
2  - 2yR1y + y2

Rewriting preceding equation as quadratic
0 = y2(1 + A2) + y(-2AxR1+ 2AB - 2yR1) + xR1

2  - 2xR1B + yR1
2  - r1

2

Simplify by defining
a = 1 + A2 b = -2AxR1+ 2AB - 2yR1 c =  xR1

2  - 2xR1B + yR1
2  - r1

2
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Satellite to Receiver Geometry-3
Quadratic equation becomes

0 = ay2 + by + c

Solve and use common sense to throw away extraneous root

y = -b - b2 - 4ac
2a

Once we have x we can get y from

x = Ay + B

If we know satellite position at any time and also have perfect range
measurements to a receiver whose location is unknown we can
derive receiver location
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Deriving Formula for Angle Between Two Range
Measurements

Angle between two range measurements can be expressed as
! = cos-1 

r1. r2

r1  r2

Range measurements can also be expressed as vectors
r1 = (xR1 - x) i + (yR1 - y) j

r2 = (xR2 - x) i + (yR2 - y) j

Range magnitudes are simply
r1  = r1

r2  = r2 

Substitution yields

! = cos-1 (xR1 - x)(xR2 - x) + (yR1 - y)(yR2 - y)
r1r2
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Simplified Global Positioning System (GPS)
Example

GPS satellites are at 20,000 km altitude and travel at 14,600 ft/sec

Satellite position can be derived from velocity

yR1 = yR1(0)

yR2 = yR2(0)

For this example

xR1(0) = 1,000,000 ft

xR2(0) = 500,000 ft

yR1(0) = 20,000*3280 ft

yR2(0) = 20,000*3280 ft

xR1 = -14,600 ft/sec

xR2 = -14,600 ft/sec

xR1 = xR1t + xR1(0)

xR2 = xR2t + xR2(0)
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FORTRAN Code to See if Receiver Location can be
Determined From Perfect Range Measurements-1

IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
X=0.
Y=0.
XR1=1000000.
YR1=20000.*3280.
XR2=500000.
YR2=20000.*3280.
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
TS=1.
TF=100.
T=0.
S=0.
H=.01
WHILE(T<=TF)

XR1OLD=XR1
XR2OLD=XR2

 XR1D=-14600.
XR2D=-14600.

 XR1=XR1+H*XR1D
XR2=XR2+H*XR2D

 T=T+H
XR1D=-14600.
XR2D=-14600.

 XR1=.5*(XR1OLD+XR1+H*XR1D)
XR2=.5*(XR2OLD+XR2+H*XR2D)

 S=S+H

Receiver location

Initial location of each satellite

Numerical integration of
satellite differential
equations using second-
order Runge-Kutta technique
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FORTRAN Code to See if Receiver Location can be
Determined From Perfect Range Measurements-2

IF(S>=(TS-.00001))THEN
S=0.
R1=SQRT((XR1-X)**2+(YR1-Y)**2)
R2=SQRT((XR2-X)**2+(YR2-Y)**2)
A1=(YR1-YR2)/(XR2-XR1)
B1=(R1**2-R2**2-XR1**2-YR1**2+XR2**2+YR2**2)/

     1 (2.*(XR2-XR1))
A=1.+A1**2
B=2.*A1*B1-2.*A1*XR1-2.*YR1
C=XR1**2-2.*XR1*B1+YR1**2-R1**2
YH=(-B-SQRT(B**2-4.*A*C))/(2.*A)
XH=A1*YH+B1
THET=ACOS(((XR1-X)*(XR2-X)+(YR1-Y)*(YR2-Y))/

     1 (R1*R2))
WRITE(9,*)T,X,XH,Y,YH,57.3*THET
WRITE(1,*)T,X,XH,Y,YH,57.3*THET

     ENDIF
END DO

 PAUSE
CLOSE(1)
END

Finding
receiver
location
from
derived
formulas
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We Can Estimate Receiver Location Perfectly if
Range Measurements are Perfect
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Angle Between Range Vectors is Small and
Approximately Constant For 100 Sec of Satellite

Travel
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Solving for Receiver Location Based on Noisy
Range Measurements From Two Satellites (No

Filtering)
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FORTRAN Simulation to See if Receiver Location
Can be Determined From Two Noisy Range

Measurements-1
GLOBAL DEFINE

       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
SIGNOISE=300.
X=0.
Y=0.
XR1=1000000.
YR1=20000.*3280.
XR2=500000.
YR2=20000.*3280.
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
TS=1.
TF=100.
T=0.
S=0.
H=.01
WHILE(T<=TF)

XR1OLD=XR1
XR2OLD=XR2
XR1D=-14600.
XR2D=-14600.

 XR1=XR1+H*XR1D
XR2=XR2+H*XR2D

 T=T+H
XR1D=-14600.
XR2D=-14600.

 XR1=.5*(XR1OLD+XR1+H*XR1D)
XR2=.5*(XR2OLD+XR2+H*XR2D)

 S=S+H

Standard deviation of noise on range
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FORTRAN Simulation to See if Receiver Location
Can be Determined From Two Noisy Range

Measurements-2

IF(S>=(TS-.00001))THEN
S=0.
CALL GAUSS(R1NOISE,SIGNOISE)
CALL GAUSS(R2NOISE,SIGNOISE)
R1=SQRT((XR1-X)**2+(YR1-Y)**2)
R2=SQRT((XR2-X)**2+(YR2-Y)**2)
R1S=R1+R1NOISE
R2S=R2+R2NOISE
A1=(YR1-YR2)/(XR2-XR1)
B1=(R1S**2-R2S**2-XR1**2-YR1**2+XR2**2+YR2**2)/

     1 (2.*(XR2-XR1))
A=1.+A1**2
B=2.*A1*B1-2.*A1*XR1-2.*YR1
C=XR1**2-2.*XR1*B1+YR1**2-R1S**2
YH=(-B-SQRT(B**2-4.*A*C))/(2.*A)
XH=A1*YH+B1
THET=ACOS(((XR1-X)*(XR2-X)+(YR1-Y)*(YR2-Y))/

     1 (R1*R2))
WRITE(9,*)T,X,XH,Y,YH,57.3*THET,R1,R2
WRITE(1,*)T,X,XH,Y,YH,57.3*THET,R1,R2

     ENDIF
END DO

 PAUSE
CLOSE(1)
END

Noisy range
measurements
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Using Raw Range Measurements Yields Large
Downrange Receiver Location Errors
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Using Raw Range Measurements Yields Large
Altitude Receiver Location Errors
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Receiver Downrange Errors Decrease by an Order
of Magnitude When Geometrical Angle Between

Satellites is Increased
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Receiver Altitude Errors Decrease Slightly When
Geometrical Angle Between Satellites is Increased
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Downrange Errors Decrease by Two Orders of
Magnitude When Geometrical Angle is Increased by

Two Orders of Magnitude
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Altitude Errors Decrease Slightly When
Geometrical Angle is Increased by Two Orders of

Magnitude
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Summary When Filtering is Not Used

•   Downrange errors decrease when range angle increases
•   Altitude errors have weak dependence on range angle
•   In best geometry range angle approaches 90 deg
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Improvements With Linear Filtering of Range
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Range from Receiver to First Satellite is Parabolic

65.607x106

65.606

65.605

65.604

65.603

65.602

65.601

65.600
100806040200

Time (Sec)

xR2(0)=50,000,000
θ(0)=36.9 Deg



11 - 26Fundamentals of Kalman Filtering:
A Practical Approach

Range From Receiver to Second Satellite is a
Straight Line

We will play it safe and use second-order recursive least squares
filter on each set of range measurements
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Recursive Second-Order Least Squares Filter
Review

Gains

K1k
 = 

3(3k2-3k+2)

k(k+1)(k+2)
   k=1,2,...,n

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2

Filter

Resk = rk
*  - rk-1 - rk-1Ts - .5rk-1Ts

2

rk = rk-1 + rk-1Ts + .5rk-1Ts
2+ K1k

Resk

rk = rk-1 + rk-1Ts+ K2k
Resk

rk = rk-1 + K3k
Resk
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FORTRAN Simulation With Filtering on Noisy Range
Measurements-1

GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
REAL*8 K1,K2,K3
SIGNOISE=300.
X=0.
Y=0.
XR1=1000000.
YR1=20000.*3280.
XR2=50000000.
YR2=20000.*3280.
R1H=0.
R1DH=0.
R1DDH=0.
R2H=0.
R2DH=0.
R2DDH=0.
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
TS=1.
TF=100.
T=0.
S=0.
H=.01
XN=0.
WHILE(T<=TF)

XR1OLD=XR1
XR2OLD=XR2
XR1D=-14600.
XR2D=-14600.

 XR1=XR1+H*XR1D
XR2=XR2+H*XR2D

 T=T+H
XR1D=-14600.
XR2D=-14600.

 XR1=.5*(XR1OLD+XR1+H*XR1D)
XR2=.5*(XR2OLD+XR2+H*XR2D)

 S=S+H

Initial state estimates of both range filters
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FORTRAN Simulation With Filtering on Noisy Range
Measurements-2

IF(S>=(TS-.00001))THEN
S=0.
XN=XN+1.
K1=3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2))
K2=18*(2*XN-1)/(XN*(XN+1)*(XN+2)*TS)
K3=60/(XN*(XN+1)*(XN+2)*TS*TS)
CALL GAUSS(R1NOISE,SIGNOISE)
CALL GAUSS(R2NOISE,SIGNOISE)
R1=SQRT((XR1-X)**2+(YR1-Y)**2)
R2=SQRT((XR2-X)**2+(YR2-Y)**2)
R1S=R1+R1NOISE
R2S=R2+R2NOISE
RES1=R1S-R1H-TS*R1DH-.5*TS*TS*R1DDH
R1H=R1H+R1DH*TS+.5*R1DDH*TS*TS+K1*RES1
R1DH=R1DH+R1DDH*TS+K2*RES1
R1DDH=R1DDH+K3*RES1
RES2=R2S-R2H-TS*R2DH-.5*TS*TS*R2DDH
R2H=R2H+R2DH*TS+.5*R2DDH*TS*TS+K1*RES2
R2DH=R2DH+R2DDH*TS+K2*RES2
R2DDH=R2DDH+K3*RES2
A1=(YR1-YR2)/(XR2-XR1)
B1=(R1H**2-R2H**2-XR1**2-YR1**2+XR2**2+YR2**2)/

     1 (2.*(XR2-XR1))
A=1.+A1**2
B=2.*A1*B1-2.*A1*XR1-2.*YR1
C=XR1**2-2.*XR1*B1+YR1**2-R1H**2
YH=(-B-SQRT(B**2-4.*A*C))/(2.*A)
XH=A1*YH+B1
THET=ACOS(((XR1-X)*(XR2-X)+(YR1-Y)*(YR2-Y))/

     1 (R1*R2))
WRITE(9,*)T,X,XH,Y,YH,57.3*THET,R1,R2
WRITE(1,*)T,X,XH,Y,YH,57.3*THET,R1,R2

     ENDIF
END DO

 PAUSE
CLOSE(1)
END

Filter gains

Filter equations

Deriving receiver
location based
on range estimates
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Filtering Range Reduces Receiver Downrange
Location Errors
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Filtering Range Reduces Receiver Altitude Location
Errors
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Using Extended Kalman Filtering
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Setting Up Problem-1
Receiver is stationary

x = 0

y = 0

Or in state space form without process noise
x

y
 = 0 0

0 0
 

x

y

Therefore systems dynamics matrix is zero
F = 

0 0

0 0

Fundamental matrix is identity matrix

!k  = 
1 0

0 1

Ranges from each satellite to receiver
r1 = (xR1 - x)2 + (yR1 - y)2

r2 = (xR2 - x)2 + (yR2 - y)2
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Setting Up Problem-2
Linearized measurement equation

!r1
*

!r2
*

 = 

"r1

"x

"r1

"y
"r2

"x

"r2

"y

 
!x

!y
 + 

vr1

vr2

Measurement noise matrix
Rk  = 

!
r1

2
0

0 !r2

2

Linearized measurement matrix

Hk  = 

!r1

!x

!r1

!y
!r2

!x

!r2

!y

Evaluate partial derivatives

r1 = (xR1 - x)2 + (yR1 - y)2

!r1

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR1-x)(-1) = 
-(xR1-x)

r1

!r1

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR1-y)(-1) = 
-(yR1-y)

r1

r2 = (xR2 - x)2 + (yR2 - y)2

!r2

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR2-x)(-1) = 
-(xR2-x)

r2

!r2

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR2-y)(-1) = 
-(yR2-y)

r2
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Setting Up Problem-3
Partial derivatives are evaluated at projected state estimates which are
also current state estimates in this example

Hk  = 

-(xR1-x)
r1

 
-(yR1-y)

r1

-(xR2-x)
r2

-(yR2-y)
r2

Projected state estimates
xk = xk-1

yk = yk-1

Since fundamental matrix is identity matrix

Projected ranges from each satellite to receiver
r1k

 = (xR1k
 - xk)2 + (yR1k

 - yk)2

r2k
 = (xR2k

 - xk)2 + (yR2k
 - yk)2

Residual is calculated from nonlinear equation
RES1k

 = r1k

*  - r1k

RES2k
 = r2k

*  - r2k

Filtering equations
xk = xk + K11k

RES1k
 + K12k

RES2k

yk = yk + K21k
RES1k

 + K22k
RES2k
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MATLAB Simulation of Extended Kalman Filter for
Locating Receiver-1

SIGNOISE=300.;
X=0.;
Y=0.;
XH=1000.;
YH=2000.;
XR1=1000000.;
YR1=20000.*3280.;
XR1D=-14600.;
XR2=50000000.;
YR2=20000.*3280.;
XR2D=-14600.;
ORDER=2;
TS=1.;
TF=100.;
PHIS=0.;
T=0.;
S=0.;
H=.01;
PHI=zeros(ORDER,ORDER);
P=zeros(ORDER,ORDER);
IDNP=eye(ORDER);
Q=zeros(ORDER,ORDER);
P(1,1)=1000. 2̂;
P(2,2)=2000. 2̂;
RMAT(1,1)=SIGNOISE 2̂;
RMAT(1,2)=0.;
RMAT(2,1)=0.;
RMAT(2,2)=SIGNOISE 2̂;
count=0;

Initial covariance matrix

Measurement noise matrix

Actual receiver location
Initial filter estimate of receiver location
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MATLAB Simulation of Extended Kalman Filter for
Locating Receiver-2

while T<=TF
XR1OLD=XR1;
XR2OLD=XR2;

 XR1D=-14600.;
XR2D=-14600.;

 XR1=XR1+H*XR1D;
XR2=XR2+H*XR2D;

 T=T+H;
XR1D=-14600.;
XR2D=-14600.;

 XR1=.5*(XR1OLD+XR1+H*XR1D);
XR2=.5*(XR2OLD+XR2+H*XR2D);

 S=S+H;
if S>=(TS-.00001)

S=0.;
R1H=sqrt((XR1-XH) 2̂+(YR1-YH) 2̂);
R2H=sqrt((XR2-XH) 2̂+(YR2-YH) 2̂);
HMAT(1,1)=-(XR1-XH)/R1H;
HMAT(1,2)=-(YR1-YH)/R1H;
HMAT(2,1)=-(XR2-XH)/R2H;
HMAT(2,2)=-(YR2-YH)/R2H;
HT=HMAT';
PHI(1,1)=1.;
PHI(2,2)=1.;
PHIT=PHI;

 PHIP=PHI*P;
 PHIPPHIT=PHIP*PHIT;
 M=PHIPPHIT+Q;
 HM=HMAT*M;
 HMHT=HM*HT;
 HMHTR=HMHT+RMAT;

HMHTRINV=inv(HMHTR);
MHT=M*HT;

 GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;

 IKH=IDNP-KH;
 P=IKH*M;

Integrate satellite equations with
second-order Runge-Kutta technique

Linearized measurement matrix

Fundamental matrix

Riccati equations
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MATLAB Simulation of Extended Kalman Filter for
Locating Receiver-3

R1NOISE=SIGNOISE*randn;
 R2NOISE=SIGNOISE*randn;

R1=sqrt((XR1-X) 2̂+(YR1-Y) 2̂);
R2=sqrt((XR2-X) 2̂+(YR2-Y) 2̂);
RES1=R1+R1NOISE-R1H;
RES2=R2+R2NOISE-R2H;
XH=XH+GAIN(1,1)*RES1+GAIN(1,2)*RES2;
YH=YH+GAIN(2,1)*RES1+GAIN(2,2)*RES2;
ERRX=X-XH;
SP11=sqrt(P(1,1));
ERRY=Y-YH;
SP22=sqrt(P(2,2));
SP11P=-SP11;
SP22P=-SP22;
count=count+1;
ArrayT(count)=T;
ArrayX(count)=X;
ArrayXH(count)=XH;
ArrayY(count)=Y;
ArrayYH(count)=YH;
ArrayERRX(count)=ERRX;
ArraySP11(count)=SP11;
ArraySP11P(count)=SP11P;
ArrayERRY(count)=ERRY;
ArraySP22(count)=SP22;
ArraySP22P(count)=SP22P;

end
end

Filter

Actual and theoretical errors in estimates

Save data in arrays for plotting and
writing to files
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Extended Kalman Filtering Dramatically Reduces
Receiver Downrange Location Errors
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Extended Kalman Filtering Dramatically Reduces
Receiver Altitude Location Errors
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Extended Kalman Filter Appears to be Working
Correctly in Downrange
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Extended Kalman Filter Appears to be Working
Correctly in Altitude
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Extended Kalman Filter’s Downrange Estimation
Errors Decrease With Increasing Angle Between

Range Vectors
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Extended Kalman Filter’s Altitude Estimation Errors
Remain Approximately Constant With Increasing

Angle Between Range Vectors
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Using Extended Kalman Filtering With One Satellite
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One Satellite Filter Formulation-1
Receiver is stationary

x = 0

y = 0

State space model of real world (no process noise)
x

y
 = 0 0

0 0
 

x

y

Systems dynamics matrix is still zero
F = 

0 0

0 0

Fundamental matrix is still identity matrix
!k  = 

1 0

0 1

Range from satellite to receiver

r1 = (xR1 - x)2 + (yR1 - y)2

One equation with two unknowns
Some people believe that this makes problem
impossible
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One Satellite Filter Formulation-2

New linearized measurement equation
!r1

* = 
"r1

"x

"r1

"y
 
!x

!y
 +vr1

New measurement noise matrix is a scalar
Rk  =!

r1

2

New linearized measurement matrix
Hk  = 

!r1

!x

!r1

!y

Evaluating partial derivatives

r1 = (xR1 - x)2 + (yR1 - y)2

!r1

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR1-x)(-1) = 
-(xR1-x)

r1

!r1

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR1-y)(-1) = 
-(yR1-y)

r1

Linearized measurement matrix

Hk  = 
-(xR1-x)

r1
 
-(yR1-y)

r1
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One Satellite Filter Formulation-3

Projected filter states
xk = xk-1

yk = yk-1

Projected range

r1k
 = (xR1k

 - xk)2 + (yR1k
 - yk)2

New extended Kalman filter

RES1k
 = r1k

*  - r1k

xk = xk + K11 k
RES1k

 

yk = yk + K21k
RES1k
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MATLAB Extended Kalman Filter for Locating
Receiver Based on Measurements From 1 Satellite-1

SIGNOISE=300.;
X=0.;
Y=0.;
XH=1000.;
YH=2000.;
XR1=1000000.;
YR1=20000.*3280.;
ORDER=2;
TS=1.;
TF=100.;
T=0.;
S=0.;
H=.01;
PHI=zeros(ORDER,ORDER);
P=zeros(ORDER,ORDER);
IDNP=eye(ORDER);
Q=zeros(ORDER,ORDER);
P(1,1)=1000. 2̂;
P(2,2)=2000. 2̂;
RMAT(1,1)=SIGNOISE 2̂;
count=0;
while T<=TF

XR1OLD=XR1;
 XR1D=-14600.;
 XR1=XR1+H*XR1D;
 T=T+H;

XR1D=-14600.;
 XR1=.5*(XR1OLD+XR1+H*XR1D);
 S=S+H;

Initial estimate of receiver location

Initial covariance matrix

Integrate satellite equations using
second-order Runge-Kutta technique
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MATLAB Extended Kalman Filter for Locating
Receiver Based on Measurements From 1 Satellite-2

if S>=(TS-.00001)
S=0.;
R1H=sqrt((XR1-XH) 2̂+(YR1-YH) 2̂);
HMAT(1,1)=-(XR1-XH)/R1H;
HMAT(1,2)=-(YR1-YH)/R1H;
HT=HMAT';
PHI(1,1)=1.;
PHI(2,2)=1.;
PHIT=PHI;

 PHIP=PHI*P;
 PHIPPHIT=PHIP*PHIT;
 M=PHIPPHIT+Q;
 HM=HMAT*M;
 HMHT=HM*HT;
 HMHTR=HMHT+RMAT;

HMHTRINV=inv(HMHTR);
MHT=M*HT;

 GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;

 IKH=IDNP-KH;
 P=IKH*M;
 R1NOISE=SIGNOISE*randn;

R1=sqrt((XR1-X) 2̂+(YR1-Y) 2̂);
RES1=R1+R1NOISE-R1H;
XH=XH+GAIN(1,1)*RES1;
YH=YH+GAIN(2,1)*RES1;
ERRX=X-XH;
SP11=sqrt(P(1,1));
ERRY=Y-YH;
SP22=sqrt(P(2,2));
SP11P=-SP11;
SP22P=-SP22;

Linearized measurement matrix

Fundamental matrix

Riccati equations

Filter

Actual and theoretical errors in estimates
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MATLAB Extended Kalman Filter for Locating
Receiver Based on Measurements From 1 Satellite-3

count=count+1;
ArrayT(count)=T;
ArrayX(count)=X;
ArrayXH(count)=XH;
ArrayY(count)=Y;
ArrayYH(count)=YH;
ArrayERRX(count)=ERRX;
ArraySP11(count)=SP11;
ArraySP11P(count)=SP11P;
ArrayERRY(count)=ERRY;
ArraySP22(count)=SP22;
ArraySP22P(count)=SP22P;

     end
end
figure
plot(ArrayT,ArrayX,ArrayT,ArrayXH),grid
xlabel('Time (Sec)')
ylabel('Receiver Downrange (Ft)')
axis([0 100 -100 1100])
figure
plot(ArrayT,ArrayY,ArrayT,ArrayYH),grid
xlabel('Time (Sec)')
ylabel('Receiver Altitude (Ft)')
axis([0 100 -150 150])
clc
output=[ArrayT',ArrayX',ArrayXH',ArrayY',ArrayYH'];
save datfil output  -ascii
output=[ArrayT',ArrayERRX',ArraySP11',ArraySP11P',ArrayERRY',ArraySP22',...
ArraySP22P'];
save covfil output  -ascii
disp 'simulation finished'

Save data as arrays

Plot some results

Write data to files
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It is Not Clear if Filter Can Estimate Receiver
Downrange Location if Only One Satellite is Used

1000

800

600

400

200

0

100806040200

Time (Sec)

Single Satellite

Actual

Estimate



11 - 53Fundamentals of Kalman Filtering:
A Practical Approach

Filter Appears to be Able to Estimate Receiver
Altitude if Only One Satellite is Used
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Filter Appears to be Able to Estimate Receiver
Downrange After Approximately 600 Sec if Only

One Satellite is Used
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Filter Appears to be Able to Estimate Receiver
Altitude if Only One Satellite is Used
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Extended Kalman Filter Appears to be Operating
Properly in Downrange
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Extended Kalman Filter Appears to be Operating
Properly in Altitude
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Using Extended Kalman Filtering With Constant
Velocity Receiver
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Developing New Extended Kalman Filter-1
Model of real world for moving receiver

x = us

y = us

Put model in state space form
x

x

y

y

 = 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 

x

x

y

y

 + 

0

us

0

us

Continuous process noise matrix

Q = 

0 0 0 0

0 !s 0 0

0 0 0 0

0 0 0 !s

Systems dynamics matrix

F = 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0
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Developing New Extended Kalman Filter-2

Since F squared is zero

! = I + F t = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

  + 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 t = 

1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1

 

Therefore the discrete fundamental matrix is

!k = 

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

Range from each satellite to receiver is
r1 = (xR1 - x)2 + (yR1 - y)2

r2 = (xR2 - x)2 + (yR2 - y)2

Linearized measurement equation

!r1
*

!r2
*

 = 

"r1

"x

"r1

"x

"r1

"y

"r1

"y

"r2

"x

"r2

"x

"r2

"y

"r1

"y

 

!x

!x

!y

!y

  + 
vr1

vr2



11 - 61Fundamentals of Kalman Filtering:
A Practical Approach

Developing New Extended Kalman Filter-3
Discrete measurement noise matrix

Rk  = 
!

r1

2
0

0 !r2

2

Linearized measurement equation

Hk  = 

!r1

!x

!r1

!x

!r1

!y

!r1

!y

!r2

!x

!r2

!x

!r2

!y

!r1

!y

Where partial derivatives evaluated at projected state estimates

Evaluation of first row of partial derivatives
!r1

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR1-x)(-1) = 
-(xR1-x)

r1

r1 = (xR1 - x)2 + (yR1 - y)2

!r1

!x
  = 0

!r1

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR1-y)(-1) = 
-(yR1-y)

r1

!r1

!y
  = 0
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Developing New Extended Kalman Filter-4

Evaluation of second row of partial derivatives

!r2

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR2-x)(-1) = 
-(xR2-x)

r2

!r2

!x
  = 0

!r2

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR2-y)(-1) = 
-(yR2-y)

r2

!r2

!y
  = 0

r2 = (xR2 - x)2 + (yR2 - y)2

Discrete process noise matrix can be derived from continuous Q

Qk = !(")Q!
T
(")d"

0

Ts

Linearized measurement matrix

Hk  = 

-(xR1-x)
r1

0
-(yR1-y)

r1
0

-(xR2-x)
r2

0
-(yR2-y)

r2
0
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Developing New Extended Kalman Filter-5
Substitution yields

Qk = 

1 ! 0 0

0 1 0 0

0 0 1 !

0 0 0 1

 

0 0 0 0

0 "s 0 0

0 0 0 0

0 0 0 "s

 

1 0 0 0

! 1 0 0

0 0 1 0

0 0 ! 1

 d!

0

Ts

After multiplication and integration

Qk = !s 

Ts
3

3
   

Ts
2

2
     0    0

Ts
2

2
   Ts      0    0

0    0    
  Ts

3

3
   

Ts
2

2

0     0      
Ts

2

2
   Ts

Since fundamental matrix exact projected states are
xk = xk-1 + Tsxk-1

xk = xk-1

yk = yk-1 + Tsyk-1

yk = yk-1

orxk  = ! x k-1
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Developing New Extended Kalman Filter-6

Projected range from each satellite to receiver
r1k

 = (xR1k
 - xk)2 + (yR1k

 - yk)2

r2k
 = (xR2k

 - xk)2 + (yR2k
 - yk)2

Residual
RES1k

 = r1k

*  - r1k

RES2k
 = r2k

*  - r2k

Filtering equations
xk = xk + K11k

RES1k
 + K12k

RES2k

xk = xk + K21k
RES1k

 + K22k
RES2k

yk = yk + K31k
RES1k

 + K32k
RES2k

yk = yk + K41k
RES1k

 + K42 k
RES2k
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MATLAB Extended Kalman Filter for Estimating the
States of a Receiver Moving at Constant Velocity-1

SIGNOISE=300.;
X=0.;
Y=0.;
XH=1000.;
YH=2000.;
XDH=0.;
YDH=0.;
XR1=1000000.;
YR1=20000.*3280.;
XR2=50000000.;
YR2=20000.*3280.;
ORDER=4;
TS=1.;
TF=200.;
PHIS=0.;
T=0.;
S=0.;
H=.01;
PHI=zeros(ORDER,ORDER);
P=zeros(ORDER,ORDER);
IDNP=eye(ORDER);
Q=zeros(ORDER,ORDER);
P(1,1)=1000. 2̂;
P(2,2)=100. 2̂;
P(3,3)=2000. 2̂;
P(4,4)=100. 2̂;
RMAT(1,1)=SIGNOISE 2̂;
RMAT(1,2)=0.;
RMAT(2,1)=0.;
RMAT(2,2)=SIGNOISE 2̂;
TS2=TS*TS;
TS3=TS2*TS;

Initial covariance matrix

Measurement noise matrix
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MATLAB Extended Kalman Filter for Estimating the
States of a Receiver Moving at Constant Velocity-2

Q(1,1)=PHIS*TS3/3.;
Q(1,2)=PHIS*TS2/2.;
Q(2,1)=Q(1,2);
Q(2,2)=PHIS*TS;
Q(3,3)=PHIS*TS3/3.;
Q(3,4)=PHIS*TS2/2.;
Q(4,3)=Q(3,4);
Q(4,4)=PHIS*TS;
count=0;
while T<=TF

XR1OLD=XR1;
XR2OLD=XR2;
XOLD=X;
YOLD=Y;

 XR1D=-14600.;
XR2D=-14600.;
XD=100.;
YD=0.;

 XR1=XR1+H*XR1D;
XR2=XR2+H*XR2D;
X=X+H*XD;
Y=Y+H*YD;

 T=T+H;
XR1D=-14600.;
XR2D=-14600.;
XD=100.;
YD=0.;

 XR1=.5*(XR1OLD+XR1+H*XR1D);
XR2=.5*(XR2OLD+XR2+H*XR2D);
X=.5*(XOLD+X+H*XD);
Y=.5*(YOLD+Y+H*YD);

 S=S+H;

Process noise matrix

Integrating satellite and receiver equations
using second-order Runge-Kutta numerical
integration
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MATLAB Extended Kalman Filter for Estimating the
States of a Receiver Moving at Constant Velocity-3

if S>=(TS-.00001)
S=0.;
XB=XH+XDH*TS;
YB=YH+YDH*TS;
R1B=sqrt((XR1-XB) 2̂+(YR1-YB) 2̂);
R2B=sqrt((XR2-XB) 2̂+(YR2-YB) 2̂);
HMAT(1,1)=-(XR1-XB)/R1B;
HMAT(1,2)=0.;
HMAT(1,3)=-(YR1-YB)/R1B;
HMAT(1,4)=0.;
HMAT(2,1)=-(XR2-XB)/R2B;
HMAT(2,2)=0.;
HMAT(2,3)=-(YR2-YB)/R2B;
HMAT(2,4)=0.;
HT=HMAT';
PHI(1,1)=1.;
PHI(1,2)=TS;
PHI(2,2)=1.;
PHI(3,3)=1.;
PHI(3,4)=TS;
PHI(4,4)=1.;
PHIT=PHI';

 PHIP=PHI*P;
 PHIPPHIT=PHIP*PHIT;
 M=PHIPPHIT+Q;
 HM=HMAT*M;
 HMHT=HM*HT;
 HMHTR=HMHT+RMAT;

HMHTRINV=inv(HMHTR);
MHT=M*HT;

 GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;

 IKH=IDNP-KH;
 P=IKH*M;

R1NOISE=SIGNOISE*randn;
 R2NOISE=SIGNOISE*randn;

R1=sqrt((XR1-X) 2̂+(YR1-Y) 2̂);
R2=sqrt((XR2-X) 2̂+(YR2-Y) 2̂);

Linearized measurement matrix

Fundamental matrix

Riccati equations
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MATLAB Extended Kalman Filter for Estimating the
States of a Receiver Moving at Constant Velocity-4

RES1=R1+R1NOISE-R1B;
RES2=R2+R2NOISE-R2B;
XH=XB+GAIN(1,1)*RES1+GAIN(1,2)*RES2;
XDH=XDH+GAIN(2,1)*RES1+GAIN(2,2)*RES2;
YH=YB+GAIN(3,1)*RES1+GAIN(3,2)*RES2;
YDH=YDH+GAIN(4,1)*RES1+GAIN(4,2)*RES2;
ERRX=X-XH;
SP11=sqrt(P(1,1));
ERRXD=XD-XDH;
SP22=sqrt(P(2,2));
ERRY=Y-YH;
SP33=sqrt(P(3,3));
ERRYD=YD-YDH;
SP44=sqrt(P(4,4));
SP11P=-SP11;
SP22P=-SP22;
SP33P=-SP33;
SP44P=-SP44;
count=count+1;
ArrayT(count)=T;
ArrayX(count)=X;
ArrayXH(count)=XH;
ArrayXD(count)=XD;
ArrayXDH(count)=XDH;
ArrayY(count)=Y;
ArrayYH(count)=YH;
ArrayYD(count)=YD;
ArrayYDH(count)=YDH;
ArrayERRX(count)=ERRX;
ArraySP11(count)=SP11;
ArraySP11P(count)=SP11P;
ArrayERRXD(count)=ERRXD;
ArraySP22(count)=SP22;
ArraySP22P(count)=SP22P;
ArrayERRY(count)=ERRY;
ArraySP33(count)=SP33;
ArraySP33P(count)=SP33P;
ArrayERRYD(count)=ERRYD;
ArraySP44(count)=SP44;
ArraySP44P(count)=SP44P;
end

end

Filter

Actual and theoretical errors in estimates

Save data in arrays for plotting and
writing to files
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Extended Kalman Filter is Able to Estimate the
Location and Velocity of the Receiver Quite Well

in Downrange
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Extended Kalman Filter is Able to Estimate the
Location and Velocity of the Receiver Quite Well

in Altitude
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New Extended Kalman Filter Appears to be
Operating Properly in Downrange
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New Extended Kalman Filter Appears to be
Operating Properly in Altitude
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Single Satellite With Constant Velocity Receiver
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Single Satellite Extended Kalman Filter-1
Model of real world for moving receiver

x = us

y = us

Put model in state space form
x

x

y

y

 = 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 

x

x

y

y

 + 

0

us

0

us

Continuous process noise matrix

Q = 

0 0 0 0

0 !s 0 0

0 0 0 0

0 0 0 !s

Systems dynamics matrix

F = 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0
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Single Satellite Extended Kalman Filter-2

Since F squared is zero

! = I + F t = 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

  + 

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 t = 

1 t 0 0

0 1 0 0

0 0 1 t

0 0 0 1

 

Therefore the discrete fundamental matrix is

!k = 

1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

Range from single satellite to receiver is
r1 = (xR1 - x)2 + (yR1 - y)2

Linearized measurement equation

!r1
* = 

"r1

"x

"r1

"x

"r1

"y

"r1

"y
 

!x

!x

!y

!y

  + vr1
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Single Satellite Extended Kalman Filter-3
Discrete measurement noise matrix is now a scalar

Linearized measurement equation

Where partial derivatives evaluated at projected state estimates

Evaluation of partial derivatives
!r1

!x
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(xR1-x)(-1) = 
-(xR1-x)

r1

r1 = (xR1 - x)2 + (yR1 - y)2

!r1

!x
  = 0

!r1

!y
  = .5 (xR1-x)2+(yR1-y)2 -.5

2(yR1-y)(-1) = 
-(yR1-y)

r1

!r1

!y
  = 0

Rk  =!
r1

2

Hk  =
!r1

!x

!r1

!x

!r1

!y

!r1

!y
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Single Satellite Extended Kalman Filter-4

Discrete process noise matrix can be derived from continuous Q

Qk = !(")Q!
T
(")d"

0

Ts

Linearized measurement matrix
Hk  = 

-(xR1-x)
r1

0
-(yR1-y)

r1
0

Substitution yields

Qk = 

1 ! 0 0

0 1 0 0

0 0 1 !

0 0 0 1

 

0 0 0 0

0 "s 0 0

0 0 0 0

0 0 0 "s

 

1 0 0 0

! 1 0 0

0 0 1 0

0 0 ! 1

 d!

0

Ts

After multiplication and integration

Qk = !s 

Ts
3

3
   

Ts
2

2
     0    0

Ts
2

2
   Ts      0    0

0    0    
  Ts

3

3
   

Ts
2

2

0     0      
Ts

2

2
   Ts
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Single Satellite Extended Kalman Filter-5
Project states ahead with exact fundamental matrix

xk = xk-1 + Tsxk-1

xk = xk-1

yk = yk-1 + Tsyk-1

yk = yk-1

Projected range from satellite to receiver
r1k

 = (xR1k
 - xk)2 + (yR1k

 - yk)2

Extended Kalman filtering equations
RES1k

 = r1k

*  - r1k

xk = xk + K11k
RES1k

xk = xk + K21k
RES1k

yk = yk + K31k
RES1k

yk = yk + K41k
RES1k

orxk  = ! x k-1
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MATLAB Single Satellite Filter for Estimating the
States of a Receiver Moving at Constant Velocity-1

SIGNOISE=300.;
PHIS=0.;
X=0.;
Y=0.;
XH=1000.;
YH=2000.;
XDH=0.;
YDH=0.;
XR1=1000000.;
YR1=20000.*3280.;
ORDER=4;
TS=1.;
TF=1000.;
T=0.;
S=0.;
H=.01;
PHI=zeros(ORDER,ORDER);
P=zeros(ORDER,ORDER);
IDNP=eye(ORDER);
Q=zeros(ORDER,ORDER);
P(1,1)=1000. 2̂;
P(2,2)=100. 2̂;
P(3,3)=2000. 2̂;
P(4,4)=100. 2̂;
RMAT(1,1)=SIGNOISE 2̂;
TS2=TS*TS;
TS3=TS2*TS;
Q(1,1)=PHIS*TS3/3.;
Q(1,2)=PHIS*TS2/2.;
Q(2,1)=Q(1,2);
Q(2,2)=PHIS*TS;
Q(3,3)=PHIS*TS3/3.;
Q(3,4)=PHIS*TS2/2.;
Q(4,3)=Q(3,4);
Q(4,4)=PHIS*TS;
count=0;

Initial covariance matrix

Process noise matrix
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MATLAB Single Satellite Filter for Estimating the
States of a Receiver Moving at Constant Velocity-2

while T<=TF
XR1OLD=XR1;
XOLD=X;
YOLD=Y;

 XR1D=-14600.;
XD=100.;
YD=0.;

 XR1=XR1+H*XR1D;
X=X+H*XD;
Y=Y+H*YD;

 T=T+H;
XR1D=-14600.;
XD=100.;
YD=0.;

 XR1=.5*(XR1OLD+XR1+H*XR1D);
X=.5*(XOLD+X+H*XD);
Y=.5*(YOLD+Y+H*YD);

 S=S+H;
if S>=(TS-.00001)

S=0.;
XB=XH+XDH*TS;
YB=YH+YDH*TS;
R1B=sqrt((XR1-XB) 2̂+(YR1-YB) 2̂);
HMAT(1,1)=-(XR1-XB)/R1B;
HMAT(1,2)=0.;
HMAT(1,3)=-(YR1-YB)/R1B;
HMAT(1,4)=0.;
HT=HMAT';
PHI(1,1)=1.;
PHI(1,2)=TS;
PHI(2,2)=1.;
PHI(3,3)=1.;
PHI(3,4)=TS;
PHI(4,4)=1.;
PHIT=PHI';

Integrating satellite and receiver equations
Using second-order Runge-Kutta technique

Linearized measurement matrix

Fundamental matrix
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MATLAB Single Satellite Filter for Estimating the
States of a Receiver Moving at Constant Velocity-3

PHIP=PHI*P;
 PHIPPHIT=PHIP*PHIT;
 M=PHIPPHIT+Q;
 HM=HMAT*M;
 HMHT=HM*HT;
 HMHTR=HMHT+RMAT;

HMHTRINV(1,1)=1./HMHTR(1,1);
MHT=M*HT;

 GAIN=MHT*HMHTRINV;
KH=GAIN*HMAT;

 IKH=IDNP-KH;
 P=IKH*M;
 R1NOISE=SIGNOISE*randn;

R1=sqrt((XR1-X) 2̂+(YR1-Y) 2̂);
RES1=R1+R1NOISE-R1B;
XH=XB+GAIN(1,1)*RES1;
XDH=XDH+GAIN(2,1)*RES1;
YH=YB+GAIN(3,1)*RES1;
YDH=YDH+GAIN(4,1)*RES1;
ERRX=X-XH;
SP11=sqrt(P(1,1));
ERRXD=XD-XDH;
SP22=sqrt(P(2,2));
ERRY=Y-YH;
SP33=sqrt(P(3,3));
ERRYD=YD-YDH;
SP44=sqrt(P(4,4));
SP11P=-SP11;
SP22P=-SP22;
SP33P=-SP33;
SP44P=-SP44;
count=count+1;

Riccati equations

Filter

Actual and theoretical errors in estimates
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MATLAB Single Satellite Filter for Estimating the
States of a Receiver Moving at Constant Velocity-4

ArrayT(count)=T;
ArrayX(count)=X;
ArrayXH(count)=XH;
ArrayXD(count)=XD;
ArrayXDH(count)=XDH;
ArrayY(count)=Y;
ArrayYH(count)=YH;
ArrayYD(count)=YD;
ArrayYDH(count)=YDH;
ArrayERRX(count)=ERRX;
ArraySP11(count)=SP11;
ArraySP11P(count)=SP11P;
ArrayERRXD(count)=ERRXD;
ArraySP22(count)=SP22;
ArraySP22P(count)=SP22P;
ArrayERRY(count)=ERRY;
ArraySP33(count)=SP33;
ArraySP33P(count)=SP33P;
ArrayERRYD(count)=ERRYD;
ArraySP44(count)=SP44;
ArraySP44P(count)=SP44P;

end
end
figure
plot(ArrayT,ArrayERRX,ArrayT,ArraySP11,ArrayT,ArraySP11P),grid
xlabel('Time (Sec)')
ylabel('Error in Estimate of Downrange (Ft)')
axis([0 1000 -11000 11000])
figure
plot(ArrayT,ArrayERRXD,ArrayT,ArraySP22,ArrayT,ArraySP22P),grid
xlabel('Time (Sec)')
ylabel('Error in Estimate of Downrange Velocity (Ft/Sec)')
axis([0 1000 -20 20])

Save data as arrays for plotting and
writing to files

Sample plots
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New Extended Kalman Filter Appears to be
Operating Properly in Downrange
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New Extended Kalman Filter Appears to be
Operating Properly in Altitude
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Using Extended Kalman Filtering With Variable
Velocity Receiver
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Gauss-Markov Model for Downrange Velocity and
Location of the Receiver

1

1 + sT

1

s

u
s1

x
0

.

x

x
.

Variance of low pass filter output

!2 = 
"s1

2T

100 ft/s average speed with Gauss-Markov 30 ft/s and 5 s correlation time

!s1 = 2T"
2
 = 2*5*302 = 9000

Add zero-mean Gaussian noise every integration interval with sigma 

!Noise = 
"s1

H
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Using a Gauss-Markov Model to Represent
Receiver Velocity in FORTRAN

GLOBAL DEFINE
       INCLUDE 'quickdraw. inc'
      END

IMPLICIT REAL*8(A-H)
IMPLICIT REAL*8(O-Z)
TAU=5.
PHI=9000.
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
T=0.
S=0.
H=.01
SIG=SQRT(PHI/H)
X=0.
Y1=0.
XDP=100.
TS=1.
TF=200.

 WHILE(T<=TF)
 CALL GAUSS(X1,SIG)

XOLD=X
Y1OLD=Y1
Y1D=(X1-Y1)/TAU
XD=XDP+Y1
X=X+H*XD
Y1=Y1+H*Y1D

 T=T+H
Y1D=(X1-Y1)/TAU
XD=XDP+Y1
X=.5*(XOLD+X+H*XD)
Y1=.5*(Y1OLD+Y1+H*Y1D)
S=S+H
IF(S>=(TS-.00001))THEN

S=0.
WRITE(9,*)T,XD,X
WRITE(1,*)T,XD,X

ENDIF
END DO

 PAUSE
CLOSE(1)
END
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Downrange Velocity of Receiver Varies Quite a Bit
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Downrange Location of the Receiver as a Function
of Time is Nearly a Straight Line
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Filter is Able to Track Receiver Downrange But Not
Velocity When Filter Does Not Have Process Noise
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Filter is Able to Track Receiver Altitude and Zero
Velocity When Filter Does Not Have Process Noise
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Filter is Able to Track Receiver Downrange Velocity
When Filter Has Process Noise

20000

15000

10000

5000

0

200150100500

Time (Sec)

!
s
=100, Two Satellites

Variable Velocity Receiver

Actual

Estimate

200

150

100

50

0

200150100500

Time (Sec)

!
s
=100, Two Satellites

Variable Velocity Receiver

Actual

Estimate



11 - 93Fundamentals of Kalman Filtering:
A Practical Approach

Estimates of Altitude and Velocity are Noisier When
There is Process Noise
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Error in Estimate of Receiver Downrange and
Velocity are Within Theoretical Bounds For Variable

Velocity
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Error in Estimate of Receiver Altitude and Velocity
are Within Theoretical Bounds For Variable Velocity
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Variable Velocity Receiver and Single Satellite
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After a While Filter Appears to be Able to Track
Receiver Downrange Location When Filter Does

Not Have Process Noise
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Filter is Unable to Follow Receiver Downrange
Velocity Variations When Filter Does Not Have

Process Noise
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The Addition of Process Noise has Ruined the
Tracking Ability of the Extended Kalman Filter

When Only One Satellite is Available
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Reducing the Process Noise Has Enabled the
Extended Kalman Filter to Track the Receiver With

a Very Significant Lag
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It is Not Possible to Track the Variable Velocity
Receiver With Only a Single Satellite
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Satellite Navigation
Summary

•   Various options for deriving stationary receiver location based
on noisy range measurements from two satellites

-   Linear filtering of range better than no filtering at all
-   Extended Kalman filter even better

•   Satellite geometry is important
-   Larger angle between range vectors yield better

estimates
•   Can track stationary receiver with single satellite

-   Have problems with variable velocity receiver
•   Can track variable velocity receiver with two satellites


