Method of Least Squares
Method of Least Squares Overview

- Deriving formulas for different least squares filters
 - Zeroth-order or one-state filter
 - First-order or two-state filter
 - Second-order or three-state filter
 - Third-Order or Four-State System
- Experiments with each of the filters
 - Signal contaminated with noise
 - Look at estimates and errors in the estimates
- Filter comparison
- Accelerometer testing example
What We Are Going To Do

• Assume a polynomial form to represent signal

• Estimate the coefficients of the selected polynomial by choosing a goodness of fit criterion

• Use calculus to minimize the sum of the squares of the individual discrepancies in order to obtain the best coefficients for the selected polynomial
Zeroth-Order or One-State Filter
Least Squares Method For Zeroth-Order System

We want to minimize

\[R = \sum_{k=1}^{n} (\hat{x}_k - x_k^*)^2 = \sum_{k=1}^{n} (a_0 - x_k^*)^2 \]

Expansion yields

\[R = \sum_{k=1}^{n} (\hat{x}_k - x_k^*)^2 = (a_0-x_1^*)^2+(a_0-x_2^*)^2+...+(a_0-x_n^*)^2 \]

Using calculus we can minimize \(R \)

\[\frac{\partial R}{\partial a_0} = 0 = 2(a_0-x_1^*)+2(a_0-x_2^*)+...+2(a_0-x_n^*) \]

Recognizing that

\[-x_1^*-x_2^*-...-x_n^* = -\sum_{k=1}^{n} x_k^* \quad \text{and} \quad a_0 + a_0 + ... + a_0 = na_0 \]
Least Squares Method For Zeroth-Order System-2

We get

\[0 = n a_0 - \sum_{k=1}^{n} x_k^* \]

Rearranging terms yields

\[\sum_{k=1}^{n} x_k^* = a_0 \frac{n}{n} \]

Since

\[\bar{x}_k = a_0 \]

- We can say that the best constant fit to a set of measurement data in the least squares sense is simply the average value of the measurements!

- Note that this is a batch processing technique since all the data must be collected before an estimate can be made.
Numerical Example For Zeroth-Order System

Sample measurement data

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x*</td>
<td>1.2</td>
<td>.2</td>
<td>2.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

We can express time in terms of the sampling time

\[t = (k-1)T_s \quad k = 1,2,3,... \]

Another way of expressing the measurement data

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k-1)T_s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>x_k^*</td>
<td>1.2</td>
<td>.2</td>
<td>2.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Solving for the best constant yields

\[\hat{x}_k = a_0 = \frac{\sum_{k=1}^{n} x_k^*}{n} = \frac{1.2+.2+2.9+2.1}{4} = 1.6 \]
The Fit To Measurement Data is Poor With a Constant of 1.6

*Can’t blame method of least squares since we specified zeroth-order polynomial
Check To See If We Minimized R

Using method of least squares value of 1.6

\[R = \sum_{k=1}^{4} (a_0 - x_k^*)^2 = (1.6 - 1.2)^2 + (1.6 - .2)^2 + (1.6 - 2.9)^2 + (1.6 - 2.1)^2 = 4.06 \]

Using a larger value of 2 yields larger R

\[R = \sum_{k=1}^{4} (a_0 - x_k^*)^2 = (2 - 1.2)^2 + (2 - .2)^2 + (2 - 2.9)^2 + (2 - 2.1)^2 = 4.70 \]

Using a smaller value of 1 also yields larger R

\[R = \sum_{k=1}^{4} (a_0 - x_k^*)^2 = (1 - 1.2)^2 + (1 - .2)^2 + (1 - 2.9)^2 + (1 - 2.1)^2 = 5.50 \]

Therefore it appears that a constant of 1.6 minimizes R
First-Order or Two-State Filter
Least Squares Method For First-Order System-1

Fit measurement data with “best” straight line

\[\hat{x} = a_0 + a_1 t \]

Or in discrete form

\[\hat{x}_k = a_0 + a_1 (k-1)T_s \]

We still want to minimize residual R

\[
R = \sum_{k=1}^{n} \left(\hat{x}_k - x_k^* \right)^2 = \sum_{k=1}^{n} \left[a_0 + a_1 (k-1)T_s - x_k^* \right]^2
\]

We can expand R

\[
R = \sum_{k=1}^{n} \left[a_0 + a_1 (k-1)T_s - x_k^* \right]^2 = (a_0 - x_1^*)^2 + (a_0 + a_1 T_s - x_2^*)^2 + \ldots + (a_0 + a_1 (n-1)T_s - x_n^*)^2
\]

Minimize R by setting derivatives to zero

\[
\frac{\partial R}{\partial a_0} = 0 = 2(a_0 - x_1^*) + 2(a_0 + a_1 T_s - x_2^*) + \ldots + 2(a_0 + a_1 (n-1)T_s - x_n^*)
\]

\[
\frac{\partial R}{\partial a_1} = 0 = 2(a_0 + a_1 T_s - x_2^*)T_s + \ldots + 2(n-1)T_s[a_0 + a_1 (n-1)T_s - x_n^*]
\]
Least Squares Method For First-Order System-2

We can simplify preceding two equations

\[
na_0 + a_1 \sum_{k=1}^{n} (k-1)T_s = \sum_{k=1}^{n} x_k^*
\]

\[
a_0 \sum_{k=1}^{n} (k-1)T_s + a_1 \sum_{k=1}^{n} [(k-1)T_s]^2 = \sum_{k=1}^{n} (k-1)T_s x_k^*
\]

These equations can also be expressed in matrix form as

\[
\begin{bmatrix}
 n & \sum_{k=1}^{n} (k-1)T_s \\
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix} =
\begin{bmatrix}
\sum_{k=1}^{n} x_k^* \\
\sum_{k=1}^{n} (k-1)T_s x_k^*
\end{bmatrix}
\]

We can solve for the coefficients by matrix inversion

\[
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix} =
\begin{bmatrix}
 n & \sum_{k=1}^{n} (k-1)T_s \\
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2
\end{bmatrix}^{-1}
\begin{bmatrix}
\sum_{k=1}^{n} x_k^* \\
\sum_{k=1}^{n} (k-1)T_s x_k^*
\end{bmatrix}
\]
Numerical Example For First-Order System

Recall

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k-1)T_s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>x_k*</td>
<td>1.2</td>
<td>.2</td>
<td>2.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Intermediate calculations

\[\sum_{k=1}^{n} (k-1)T_s = 0+1+2+3 = 6 \]
\[\sum_{k=1}^{n} x_k^* = 1.2+.2+2.9+2.1 = 6.4 \]
\[\sum_{k=1}^{n} [(k-1)T_s]^2 = 0^2 + 1^2 + 2^2 + 3^2 = 14 \]
\[\sum_{k=1}^{n} (k-1)T_s x_k^* = 0*1.2+1*.2+2*2.9+3*2.1=12.3 \]

Therefore

\[
\begin{bmatrix}
 a_0 \\
 a_1
\end{bmatrix}
= \begin{bmatrix}
 4 & 6 \\
 6 & 14
\end{bmatrix}^{-1}
\begin{bmatrix}
 6.4 \\
 12.3
\end{bmatrix}
= \begin{bmatrix}
 7.9 \\
 .54
\end{bmatrix}
\]

\[\hat{x}_k = .79 + .54(k-1)T_s \]

Note that this is a batch processing technique since all the data must be collected before an estimate can be made
Straight Line Fit to Data is Better Than Constant Fit

Straight line fit residual is smaller than constant fit residual

\[R = [0.79 + 0.54(0) - 1.2]^2 + [0.79 + 0.54(1) - 0.2]^2 + [0.79 + 0.54(2) - 2.9]^2 + [0.79 + 0.54(3) - 2.1]^2 = 2.61 \]
Second-Order Or Three-State Least Squares Filter
Least Squares Method For Second-Order System

Fit measurement data with “best” parabola

\[\hat{x} = a_0 + a_1t + a_2t^2 \]

Or in discrete form

\[\hat{x}_k = a_0 + a_1(k-1)T_s + a_2[(k-1)T_s]^2 \]

We still want to minimize residual \(R \)

\[R = \sum_{k=1}^{n} (\hat{x}_k - x_k^*)^2 = \sum_{k=1}^{n} [a_0 + a_1(k-1)T_s + a_2(k-1)^2T_s^2 - x_k^*]^2 \]

We can expand \(R \)

\[R = (a_0-x_1^*)^2 + [a_0+a_1T_s+a_2T_s^2-x_2^*]^2 + ... + [a_0+a_1(n-1)T_s+a_2(n-1)^2T_s^2-x_n^*]^2 \]

Minimize \(R \) by setting derivatives to zero

\[\frac{\partial R}{\partial a_0} = 0 = 2(a_0-x_1^*) + 2[a_0+a_1T_s+a_2T_s^2-x_2^*] + ... + 2[a_0+a_1(n-1)T_s+a_2(n-1)^2T_s^2-x_n^*] \]

\[\frac{\partial R}{\partial a_1} = 0 = 2[a_0+a_1T_s+a_2T_s^2-x_2^*]T_s + ... + 2[a_0+a_1(n-1)T_s+a_2(n-1)^2T_s^2-x_n^*](n-1)T_s \]

\[\frac{\partial R}{\partial a_2} = 0 = 2[a_0+a_1T_s+a_2T_s^2-x_2^*]T_s^2 + ... + 2[a_0+a_1(n-1)T_s+a_2(n-1)^2T_s^2-x_n^*](n-1)^2T_s^2 \]
Least Squares Method For Second-Order System-2

We can simplify preceding three equations

\[na_0 + a_1 \sum_{k=1}^{n} (k-1)T_s + a_2 \sum_{k=1}^{n} [(k-1)T_s]^2 = \sum_{k=1}^{n} x_k^* \]

\[a_0 \sum_{k=1}^{n} (k-1)T_s + a_1 \sum_{k=1}^{n} [(k-1)T_s]^2 + a_2 \sum_{k=1}^{n} [(k-1)T_s]^3 = \sum_{k=1}^{n} (k-1)T_s x_k^* \]

\[a_0 \sum_{k=1}^{n} [(k-1)T_s]^2 + a_1 \sum_{k=1}^{n} [(k-1)T_s]^3 + a_2 \sum_{k=1}^{n} [(k-1)T_s]^4 = \sum_{k=1}^{n} [(k-1)T_s]^2 x_k^* \]

These equations can also be expressed in matrix form as

\[
\begin{bmatrix}
 n & \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2 \\
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2 & \sum_{k=1}^{n} [(k-1)T_s]^3 \\
 \sum_{k=1}^{n} [(k-1)T_s]^2 & \sum_{k=1}^{n} [(k-1)T_s]^3 & \sum_{k=1}^{n} [(k-1)T_s]^4 \\
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
\end{bmatrix}
=
\begin{bmatrix}
 \sum_{k=1}^{n} x_k^* \\
 \sum_{k=1}^{n} (k-1)T_s x_k^* \\
 \sum_{k=1}^{n} [(k-1)T_s]^2 x_k^* \\
\end{bmatrix}
\]
We can solve for the coefficients by matrix inversion

\[
\begin{bmatrix}
a_0 \\
a_1 \\
a_2
\end{bmatrix} =
\begin{bmatrix}
n \\
\sum_{k=1}^{n} (k-1)T_s \\
\sum_{k=1}^{n} [(k-1)T_s]^2 \\
\sum_{k=1}^{n} [(k-1)T_s]^3 \\
\sum_{k=1}^{n} [(k-1)T_s]^4
\end{bmatrix}
\begin{bmatrix}
\sum_{k=1}^{n} x_k^* \\
\sum_{k=1}^{n} (k-1)T_s x_k^* \\
\sum_{k=1}^{n} [(k-1)T_s] x_k^* \\
\sum_{k=1}^{n} [(k-1)T_s]^2 x_k^*
\end{bmatrix}
\]

*Note that this is a batch processing technique since all the data must be collected before an estimate can be made
MATLAB Program to Solve For Three Coefficients

\[\begin{align*}
T(1) &= 0; \\
T(2) &= 1; \\
T(3) &= 2; \\
T(4) &= 3; \\
X(1) &= 1.2; \\
X(2) &= .2; \\
X(3) &= 2.9; \\
X(4) &= 2.1; \\
N &= 4; \\
SUM1 &= 0; \\
SUM2 &= 0; \\
SUM3 &= 0; \\
SUM4 &= 0; \\
SUM5 &= 0; \\
SUM6 &= 0; \\
SUM7 &= 0; \\
end \\
for I = 1:4 \\
SUM1 &= SUM1 + T(I); \\
SUM2 &= SUM2 + T(I) * T(I); \\
SUM3 &= SUM3 + X(I); \\
SUM4 &= SUM4 + T(I) * X(I); \\
SUM5 &= SUM5 + T(I) * T(I) * T(I); \\
SUM6 &= SUM6 + T(I) * T(I) * T(I) * T(I); \\
SUM7 &= SUM7 + T(I) * T(I) * T(I) * T(I) * X(I); \\
end \\
A(1,1) &= N; \\
A(1,2) &= SUM1; \\
A(1,3) &= SUM2; \\
A(1,4) &= SUM3; \\
A(2,1) &= SUM1; \\
A(2,2) &= SUM2; \\
A(2,3) &= SUM5; \\
A(2,4) &= SUM2; \\
A(3,1) &= SUM2; \\
A(3,2) &= SUM5; \\
A(3,3) &= SUM6; \\
A(3,4) &= SUM3; \\
AINV &= inv(A); \\
B(1,1) &= SUM3; \\
B(2,1) &= SUM4; \\
B(3,1) &= SUM7; \\
ANS &= AINV * B
\end{align*} \]

\[\begin{align*}
\text{Data} \\
\begin{array}{c|cccc}
k & 1 & 2 & 3 & 4 \\
\hline
(k-1)T_s & 0 & 1 & 2 & 3 \\
x_k & 1.2 & .2 & 2.9 & 2.1 \\
\end{array}
\end{align*} \]

\[\begin{align*}
\text{ANS} &= \begin{bmatrix} .84 \\ .36 \\ .05 \end{bmatrix} \\
\hat{x}_k &= .84 + .39(k-1)T_s + .05(k-1)T_s^2
\end{align*} \]
Parabolic Fit To Data is Pretty Good Too

Parabolic fit residual is smaller than constant or straight line fit residual

\[R = \left[0.84 + 0.39(0) + 0.05(0) - 1.2\right]^2 + \left[0.84 + 0.39(1) + 0.05(1) - 0.2\right]^2 + \left[0.84 + 0.39(2) + 0.05(2) - 2.9\right]^2 + \left[0.84 + 0.39(3) + 0.05(3) - 2.1\right]^2 = 2.60 \]
Least Squares Method For Third-Order System

Fit measurement data with “best” Cubic

\[\hat{x} = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \]

Or in discrete form

\[\hat{x}_k = a_0 + a_1 (k-1)T_s + a_2 [(k-1)T_s]^2 + a_3 [(k-1)T_s]^3 \]

We still want to minimize residual \(R \)

\[R = \sum_{k=1}^{n} (\hat{x}_k - x_k^*)^2 \]

Using same minimization techniques as before

\[
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 a_3
\end{bmatrix} =
\begin{bmatrix}
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2 & \sum_{k=1}^{n} [(k-1)T_s]^3 & \sum_{k=1}^{n} [(k-1)T_s]^4 & \sum_{k=1}^{n} [(k-1)T_s]^5 & \sum_{k=1}^{n} [(k-1)T_s]^6 \\
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} [(k-1)T_s]^2 & \sum_{k=1}^{n} [(k-1)T_s]^3 & \sum_{k=1}^{n} [(k-1)T_s]^4 & \sum_{k=1}^{n} [(k-1)T_s]^5 & \sum_{k=1}^{n} [(k-1)T_s]^6 \\
 \sum_{k=1}^{n} [(k-1)T_s]^3 & \sum_{k=1}^{n} [(k-1)T_s]^4 & \sum_{k=1}^{n} [(k-1)T_s]^5 & \sum_{k=1}^{n} [(k-1)T_s]^6 & \sum_{k=1}^{n} [(k-1)T_s]^7 & \sum_{k=1}^{n} [(k-1)T_s]^8 \\
 \sum_{k=1}^{n} [(k-1)T_s]^3 & \sum_{k=1}^{n} [(k-1)T_s]^4 & \sum_{k=1}^{n} [(k-1)T_s]^5 & \sum_{k=1}^{n} [(k-1)T_s]^6 & \sum_{k=1}^{n} [(k-1)T_s]^7 & \sum_{k=1}^{n} [(k-1)T_s]^8 \\
 \sum_{k=1}^{n} [(k-1)T_s]^5 & \sum_{k=1}^{n} [(k-1)T_s]^6 & \sum_{k=1}^{n} [(k-1)T_s]^7 & \sum_{k=1}^{n} [(k-1)T_s]^8 & \sum_{k=1}^{n} [(k-1)T_s]^9 & \sum_{k=1}^{n} [(k-1)T_s]^10
\end{bmatrix}^{-1}
\begin{bmatrix}
 \sum_{k=1}^{n} x_k^* \\
 \sum_{k=1}^{n} (k-1)T_s x_k^* \\
 \sum_{k=1}^{n} [(k-1)T_s]^2 x_k^* \\
 \sum_{k=1}^{n} [(k-1)T_s]^3 x_k^* \\
 \sum_{k=1}^{n} [(k-1)T_s]^4 x_k^* \\
 \sum_{k=1}^{n} [(k-1)T_s]^5 x_k^*
\end{bmatrix}
\]
MATLAB Program To Solve For Four Coefficients

```matlab
T(1)=0;
T(2)=1;
T(3)=2;
T(4)=3;
X(1)=1.2;
X(2)=.2;
X(3)=2.9;
X(4)=2.1;
N=4;
SUM1=0;
SUM2=0;
SUM3=0;
SUM4=0;
SUM5=0;
SUM6=0;
SUM7=0;
SUM8=0;
SUM9=0;
SUM10=0;
for I=1:4
    SUM1=SUM1+T(I);
    SUM2=SUM2+T(I)*T(I);
    SUM3=SUM3+X(I);
    SUM4=SUM4+T(I)*X(I);
    SUM5=SUM5+T(I)^3;
    SUM6=SUM6+T(I)^4;
    SUM7=SUM7+T(I)*T(I)*X(I);
    SUM8=SUM8+T(I)^5;
    SUM9=SUM9+T(I)^6;
    SUM10=SUM10+T(I)*T(I)*T(I)*X(I);
end
A(1,1)=N;
A(1,2)=SUM1;
A(1,3)=SUM2;
A(1,4)=SUM5;
A(2,1)=SUM1;
A(2,2)=SUM2;
A(2,3)=SUM5;
A(2,4)=SUM6;
A(3,1)=SUM3;
A(3,2)=SUM5;
A(3,3)=SUM6;
A(3,4)=SUM8;
A(4,1)=SUM5;
A(4,2)=SUM6;
A(4,3)=SUM8;
A(4,4)=SUM9;
AINV=inv(A);
B(1,1)=SUM3;
B(2,1)=SUM4;
B(3,1)=SUM7;
B(4,1)=SUM10;
ANS=AINV*B
```

Data

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k-1)T_s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>x_k</td>
<td>1.2</td>
<td>.2</td>
<td>2.9</td>
<td>2.1</td>
</tr>
</tbody>
</table>

\[\hat{x}_k = 1.2 - 5.25(k-1)T_s + 5.45[(k-1)T_s]^2 - 1.2[(k-1)T_s]^3 \]
Third-Order Fit Goes Through All Four Measurements!

Cubic fit residual is zero

\[R = [1.2-5.25(0)+5.45(0)-1.2(0)-1.2]^2 + [1.2-5.25(1)+5.45(1)-1.2(1)-2]^2 + [1.2-5.25(2)+5.45(2)-1.2(2)-2.9]^2 + [1.2-5.25(3)+5.45(3)-1.2(3)-2.1]^2 = 0 \]
For Least Squares Fit We Don’t Want To Always Minimize Residual

Cases considered

<table>
<thead>
<tr>
<th>System Order</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.06</td>
</tr>
<tr>
<td>1</td>
<td>2.61</td>
</tr>
<tr>
<td>2</td>
<td>2.60</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Estimate passes through all measurements

- The residual is the difference between estimate and measurement
- Making the residual zero simply means that we pass polynomial through all the measurements
 - This will be bad when we consider noisy measurements
Another Example of Fitting Data With Various Order Polynomials-1

Data

First-Order
Another Example of Fitting Data With Various Order Polynomials -2
Another Example of Fitting Data With Various Order Polynomials -3

Fourth-Order

Fifth-Order
Another Example of Fitting Data With Various Order Polynomials -4

Sixth-Order
Experiments With Zeroth-Order or One-State Least Squares Filter

\[x_k^* = \text{Signal} + \text{Noise} \]
\[a_0 = \frac{\sum_{k=1}^{n} x_k^*}{n} \]
\[\hat{x}_k = a_0 \]

Measurements considered

- \(x^* = 1 + \text{noise} \)
 \(\sigma_{\text{noise}} = 1 \)
 Zeroth-order signal

- \(x^* = t + 3 + \text{noise} \)
 \(\sigma_{\text{noise}} = 5 \)
 First-order signal
FORTRAN Program For Conducting Experiments With Zeroth-Order Least Squares Filter

GLOBAL DEFINE
 INCLUDE 'quickdraw.inc'
END
IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
REAL*8 A(1,1),AINV(1,1),B(1,1),ANS(1,1),X(101),X1(101)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
SIGNOISE=1.
N=0
TS=.1
SUM3=0.
SUMPZ1=0.
SUMPZ2=0.
DO 10 T=0.,10.,TS
 N=N+1
 CALL GAUSS(XNOISE,SIGNOISE)
 X1(N)=1
 X(N)=X1(N)+XNOISE
 SUM3=SUM3+X(N)
 NMAX=N
10 CONTINUE
A(1,1)=N
B(1,1)=SUM3
AINV(1,1)=1./A(1,1)
ANS(1,1)=AINV(1,1)*B(1,1)
DO 11 I=1,NMAX
 T=.1*(I-1)
 XHAT=ANS(1,1)
 ERRX=X1(I)-XHAT
 ERRXP=X(I)-XHAT
 ERRX2=(X1(I)-XHAT)**2
 ERRXP2=(X(I)-XHAT)**2
 SUMPZ1=ERRX2+SUMPZ1
 SUMPZ2=ERRXP2+SUMPZ2
11 WRITE(9,*)T,X1(I),X(I),XHAT,ERRX,ERRXP,SUMPZ1,SUMPZ2
 WRITE(1,*)T,X1(I),X(I),XHAT,ERRX,ERRXP,SUMPZ1,SUMPZ2
 CONTINUE
CLOSE(1)
PAUSE
END
Zeroth-Order Filter Smoothes Noisy Measurements

Measurement

\[x^e = 1 + \text{noise} \]
\[\sigma_{\text{noise}} = 1 \]
Zeroth-Order Filter Yields Near Perfect Estimates of Constant Signal

Measurement

\[x^* = 1 + \text{noise} \]

\[\sigma_{\text{noise}} = 1 \]
Estimation Errors Are Nearly Zero For Zeroth-Order Least Squares Filter

\[
\sum (\text{Signal} - \text{Estimate})^2 = 0.01507
\]

\[
\sum (\text{Measurement} - \text{Estimate})^2 = 91.92
\]
Increasing Order of Signal and Changing Noise Standard Deviation

Measurement

\[x^* = t + 3 + \text{noise} \]

\[\sigma_{\text{noise}} = 5 \]
Zeroth-Order Least Squares Filter Does Not Capture Upward Trend of Measurement Data

\[x^* = t + 3 + \text{noise} \]

\[\sigma_{\text{noise}} = 5 \]
Zeroth-Order Least Squares Filter Can Not Estimate Slope of Signal

Measurement

\[x^* = t + 3 + \text{noise} \]
\[\sigma_{\text{noise}} = 5 \]
Errors in Estimate of Signal Grow With Time

\[\sum (\text{Signal} - \text{Estimate})^2 = 834 \]
\[\sum (\text{Measurement} - \text{Estimate})^2 = 2736 \]

Larger values indicate filter is diverging
Experiments With First-Order or Two-State Least Squares Filter

\[
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix} = \left[\begin{array}{c}
n \\
\sum_{k=1}^{n} (k-1)T_s \\
\sum_{k=1}^{n} (k-1)T_s^2
\end{array} \right]^{-1} \left[\begin{array}{c}
\sum_{k=1}^{n} x_k^* \\
\sum_{k=1}^{n} (k-1)T_s x_k^*
\end{array} \right]
\]

\[\hat{x}_k = a_0 + a_1 (k-1)T_s\]

\[\hat{x}_k = a_1\]

Measurements considered

- Zeroth-order signal: \(x^* = 1 + \text{noise}\), \(\sigma_{\text{noise}} = 1\)
- First-order signal: \(x^* = t + 3 + \text{noise}\), \(\sigma_{\text{noise}} = 5\)
- Second-order signal: \(x^* = 5t^2 - 2t + 2 + \text{noise}\), \(\sigma_{\text{noise}} = 50\)
MATLAB Code For Conducting Experiments With First-Order Least Squares Filter

Measurement noise standard deviation

Actual signal

Measurement

First-order filter

Errors

```matlab
SIGNOISE=1.;
N=0;
TS=.1;
SUM1=0;
SUM2=0;
SUM3=0;
SUM4=0.;
SUMPZ1=0.;
SUMPZ2=0.;
count=0;
for T=0:TS:10
    N=N+1;
    XNOISE=SIGNOISE*randn;
    X1(N)=1;
    XD(N)=0.;
    X(N)=X1(N)+XNOISE;
    SUM1=SUM1+T;
    SUM2=SUM2+T*T;
    SUM3=SUM3+X(N);
    SUM4=SUM4+T*X(N);
end
A(1,1)=N;
A(1,2)=SUM1;
A(2,1)=SUM1;
A(2,2)=SUM2;
B(1,1)=SUM3;
B(2,1)=SUM4;
AINV=inv(A);
ANS=AINV*B;
for I=1:NMAX
    T=.1*(I-1);
    XHAT=ANS(1,1)+ANS(2,1)*T;
    XDHAT=ANS(2,1);
    ERRX=X1(I)-XHAT;
    ERRXD=XD(I)-XDHAT;
    ERRXP=X(I)-XHAT;
    ERRXP2=(X(I)-XHAT)^2;
    SUMPZ1=ERRX2+SUMPZ1;
    SUMPZ2=ERRXP2+SUMPZ2;
    count=count+1;
    ArrayT(count)=T;
    ArrayA(count)=X1(I);
    ArrayB(count)=X(I);
    ArrayXHAT(count)=XHAT;
    ArrayERRX(count)=ERRX;
    ArrayERRXD(count)=ERRXD;
    ArraySUMPZ1(count)=SUMPZ1;
    ArraySUMPZ2(count)=SUMPZ2;
end
clcl;
output=[ArrayT',ArrayA',ArrayB',ArrayXHAT',ArrayERRX',ArrayERRXD',ArraySUMPZ1',ArraySUMPZ2'];
save datfil output_ascii
disp 'simulation finished'
```
First-Order Filter Has Trouble in Estimating Zeroth-Order Signal

Measurement

\[x^* = 1 + \text{noise} \]
\[\sigma_{\text{noise}} = 1 \]
Errors in Estimate of Signal and It’s Derivative Are Not Too Large

\[\sum (\text{Signal} - \text{Estimate})^2 = 1.895 \]
\[\sum (\text{Measurement} - \text{Estimate})^2 = 90.04 \]

Performing worse than zeroth-order filter
Increasing Order of Signal and Changing Noise Standard Deviation

Measurement

\[x^* = t + 3 + \text{noise} \]
\[\sigma_{\text{noise}} = 5 \]
First-Order Filter Does Much Better Job in Estimating First-Order Signal Than Zeroth-Order Filter

Measurement

\[x^n = t + 3 + \text{noise} \]
\[\sigma_{\text{noise}} = 5 \]
First-Order Filter is Able To Estimate Derivative of First-Order Signal Accurately

\[\sum (\text{Signal} - \text{Estimate})^2 = 47.38 \]

\[\sum (\text{Measurement} - \text{Estimate})^2 = 2251 \]

Much better than zeroth-order filter
Increasing Order of Signal and Changing Noise Standard Deviation

Measurement

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
First-Order Filter Attempts to Track Second-Order Measurements

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
On the Average First-Order Filter Estimates Second-Order Signal

Measurement

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
Large Estimation Errors Result When First-Order Filter Attempts to Track Second-Order Signal

\[\sum (\text{Signal} - \text{Estimate})^2 = 143557 \]
\[\sum (\text{Measurement} - \text{Estimate})^2 = 331960 \]

Larger Values Indicate Filter Is Diverging
Experiments With Second-Order or Three-State Least Squares Filter

\[
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
\end{bmatrix} =
\begin{bmatrix}
 \sum_{k=1}^{n} (k-1)T_s & \sum_{k=1}^{n} ((k-1)T_s)^2 & \sum_{k=1}^{n} ((k-1)T_s)^3 \\
 \sum_{k=1}^{n} ((k-1)T_s)^2 & \sum_{k=1}^{n} ((k-1)T_s)^3 & \sum_{k=1}^{n} ((k-1)T_s)^4 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
 \sum_{k=1}^{n} x_k^* \\
 \sum_{k=1}^{n} (k-1)T_s x_k^* \\
 \sum_{k=1}^{n} ((k-1)T_s)^2 x_k^* \\
\end{bmatrix}
\]

\[\hat{x}_k = a_0 + a_1(k-1)T_s + a_2((k-1)T_s)^2\]
\[\hat{x}_k = a_1 + 2a_2(k-1)T_s\]
\[\hat{x}_k = 2a_2\]

Measurements considered

- **Zeroth-order signal**
 - \(x^* = 1 + \text{noise}\)
 - \(\sigma_{\text{noise}} = 1\)

- **First-order signal**
 - \(x^* = t + 3 + \text{noise}\)
 - \(\sigma_{\text{noise}} = 5\)

- **Second-order signal**
 - \(x^* = 5t^2 - 2t + 2 + \text{noise}\)
 - \(\sigma_{\text{noise}} = 50\)
MATLAB Code For Conducting Experiments With Second-Order Least Squares Filter - 1

```matlab
SIGNoise=1.;
TS=.1;
N=0;
SUM1=0.;
SUM2=0.;
SUM3=0.;
SUM4=0.;
SUM5=0.;
SUM6=0.;
SUM7=0.;
SUMPZ1=0.;
SUMPZ2=0.;
count=0;
for T=0:TS:10
    N=N+1;
    XNOISE=SIGNoise*randn;
    X1(N)=1.;
    XD(N)=0.;
    XDD(N)=0.;
    X(N)=X1(N)+XNOISE;
    SUM1=SUM1+T;
    SUM2=SUM2+T*T;
    SUM3=SUM3+X(N);
    SUM4=SUM4+T*X(N);
    SUM5=SUM5+T^3;
    SUM6=SUM6+T^4;
    SUM7=SUM7+T*T*X(N);
    NMAX=N;
end
A(1,1)=N;
A(1,2)=SUM1;
A(1,3)=SUM2;
A(2,1)=SUM1;
A(2,2)=SUM2;
A(2,3)=SUM5;
A(3,1)=SUM2;
A(3,2)=SUM5;
A(3,3)=SUM6;
B(1,1)=SUM3;
B(2,1)=SUM4;
B(3,1)=SUM7;
AINV=inv(A);
ANS=AINV*B;
```
MATLAB Code For Conducting Experiments With Second-Order Least Squares Filter - 2

for I=1:NMAX
 T=.1*(I-1);
 XHAT=ANS(1,1)+ANS(2,1)*T+ANS(3,1)*T*T;
 XDDHAT=2.*ANS(3,1);
 ERRX=X1(I)-XHAT;
 ERRXD=XD(I)-XDDHAT;
 ERRX2=(X1(I)-XHAT)^2;
 ERRXP=X(I)-XHAT;
 ERRXP2=(X(I)-XHAT)^2;
 SUMPZ1=ERRX2+SUMPZ1;
 SUMPZ2=ERRXP2+SUMPZ2;
 count=count+1;
 ArrayT(count)=T;
 ArrayA(count)=X1(I);
 ArrayB(count)=X(I);
 ArrayXHAT(count)=XHAT;
 ArrayERRX(count)=ERRX;
 ArrayERRXD(count)=ERRXD;
 ArraySUMPZ1(count)=SUMPZ1;
 ArraySUMPZ2(count)=SUMPZ2;
end
figure
plot(ArrayT,ArrayA,ArrayT,ArrayXHAT),grid
xlabel('Time (Sec)')
ylabel('Estimates and Actual')
axis([0 10 0 1.4])
figure
plot(ArrayT,ArrayERRX,ArrayT,ArrayERRXD,ArrayT,ArrayERRXDD),grid
xlabel('Time (Sec)')
ylabel('Differences')
axis([0 10 -.2 .5])
clc
output=[ArrayT',ArrayA',ArrayB',ArrayXHAT',ArrayERRX',ArrayERRXD',ArrayERRXDD',ArraySUMPZ1',ArraySUMPZ2'];
save datfil output -ascii
disp 'simulation finished'
Second-Order Filter Estimates Signal is Parabola Even Though it is a Constant

Measurement

\[x^* = 1 + \text{noise} \]
\[\sigma_{\text{noise}} = 1 \]
Estimation Errors Between Estimates and States of Signal Are Not Terrible When Order of Filter is Too High

\[\sum (\text{Signal} - \text{Estimate})^2 = 2.63 \quad \text{Larger than zeroth and first-order filters} \]

\[\sum (\text{Measurement} - \text{Estimate})^2 = 89.3 \quad \text{Smaller than zeroth and first-order filters} \]
Increasing Order of Signal and Changing Noise Standard Deviation

Measurement

\[x^* = t + 3 + \text{noise} \]

\[\sigma_{\text{noise}} = 1 \]
Second-Order Filter Attempts to Fit First-Order Signal With a Parabola

Measurement

\[x^* = t + 3 + \text{noise} \]

\[\sigma_{\text{noise}} = 1 \]
Second-Order Fit to First-Order Signal Yields Larger Errors Than First-Order Fit

\[\sum (\text{Signal} - \text{Estimate})^2 = 65.8 \quad \text{Larger than first-order filter} \]

\[\sum (\text{Measurement} - \text{Estimate})^2 = 2232 \quad \text{Smaller than first-order filter} \]
Increasing Order of Signal and Changing Noise Standard Deviation

Measurement

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
Second-Order Filter Provides Near Perfect Estimates of Second-Order Signal

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
The Error in the Estimates of All States of Second-Order Filter Against Second-Order Signal are Better Than All Other Filter Fits

\[\sum (\text{Signal} - \text{Estimate})^2 = 6577. \]

\[\sum (\text{Measurement} - \text{Estimate})^2 = 223265 \]

Both smaller than first-order filter
Comparison of Filters
Zeroth-Order Least Squares Filter Best Tracks
Zeroth-Order Measurement

Measurement

\[x^* = 1 + \text{noise} \]
\[\sigma_{\text{noise}} = 1 \]
First-Order Least Squares Filter Best Tracks First-Order Measurement

Measurement

\[x^* = t + 3 + \text{noise} \]

\[\sigma_{\text{noise}} = 1 \]
Second-Order Least Squares Filter Tracks Parabolic Signal Quite Well

Measurement

\[x^* = 5t^2 - 2t + 2 + \text{noise} \]

\[\sigma_{\text{noise}} = 50 \]
From a Quantitative Point of View Best Estimates of Signal are Obtained When Filter Order Matches Signal Order

\[
\begin{array}{ccc}
\text{Filter Order} & \text{0} & \text{1} & \text{2} \\
\text{Signal Order} & \sum (\text{Signal - Estimate})^2 & 1.895 & 47.38 & 143557 \\
0 & .01057 & 834 & \\
1 & & & 143557 \\
2 & 2.63 & 65.8 & 6577 \\
\end{array}
\]

Note that diagonal elements are smallest
From a Quantitative Point of View Estimates Get Closer To Measurements When Filter Order Gets Higher

<table>
<thead>
<tr>
<th>Signal Order</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Order</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>91.92</td>
<td>2736</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>90.04</td>
<td>2251</td>
<td>331960</td>
</tr>
<tr>
<td>2</td>
<td>89.3</td>
<td>2232</td>
<td>223265</td>
</tr>
</tbody>
</table>

* Note that last row is smallest
Accelerometer Testing Example
General Least Squares Coefficients For Different Order Polynomial Fits

Before

\[\hat{x}_k = a_0 + a_1(k-1)T_s + a_2[(k-1)T_s]^2 + \ldots + a_n[(k-1)T_s]^n \]

In general

\[\hat{y} = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \]

<table>
<thead>
<tr>
<th>Order</th>
<th>Equations</th>
</tr>
</thead>
</table>
| Zeroth | \[\sum_{k=1}^{n} y_k^* \]
\[a_0 = \frac{1}{n} \sum_{k=1}^{n} x_k \] |
| First | \[
\begin{bmatrix}
a_0 \\
a_1
\end{bmatrix} =
\begin{bmatrix}
n & \sum_{k=1}^{n} x_k \\
\sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2
\end{bmatrix}^{-1}
\begin{bmatrix}
\sum_{k=1}^{n} y_k^* \\
\sum_{k=1}^{n} x_k y_k^*
\end{bmatrix}
\]
| Second | \[
\begin{bmatrix}
a_0 \\
a_1 \\
a_2
\end{bmatrix} =
\begin{bmatrix}
n & \sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2 \\
\sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k^3 \\
\sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k^3 & \sum_{k=1}^{n} x_k^4
\end{bmatrix}^{-1}
\begin{bmatrix}
\sum_{k=1}^{n} y_k^* \\
\sum_{k=1}^{n} x_k y_k^* \\
\sum_{k=1}^{n} x_k^2 y_k^*
\end{bmatrix}
\] |
Accelerometer Experiment Test Setup

Accelerometer Output = g\cos\theta_k + B + SFg\cos\theta_k + K(g\cos\theta_k)^2

Theory = g\cos\theta_k
Formulating Error Equations For Least Squares Filter

Error equation for perfect angular measurements

\[\text{Error} = \text{Accelerometer Output} - \text{Theory} = B + SFg\cos \theta_k + K(g\cos \theta_k)^2 \]

Error equation for noisy angular measurements

\[\text{Error} = \text{Accelerometer Output} - \text{Theory} = g\cos \theta^*_K + B + SFg\cos \theta^*_K + K(g\cos \theta^*_K)^2 - g\cos \theta_K \]

For filter implementation

\[\text{Error} \rightarrow y_k \]

\[g\cos \theta^*_k \rightarrow x_k \]

It is important to note that

\[g\cos \theta^*_K - g\cos \theta_K \neq 0 \]
Nominal Values For Accelerometer Testing Example

<table>
<thead>
<tr>
<th>Term</th>
<th>Scientific Value</th>
<th>English Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias Error</td>
<td>10 μg</td>
<td>$10 \times 10^{-6} \times 32.2 = 0.000322$ ft/sec2</td>
</tr>
<tr>
<td>Scale Factor Error</td>
<td>5 ppm</td>
<td>5×10^{-6}</td>
</tr>
<tr>
<td>G-Squared Sensitive Drift</td>
<td>1 μg/g2</td>
<td>$1 \times 10^{-6}/32.2 = 3.106 \times 10^{-8}$ sec2/ft</td>
</tr>
</tbody>
</table>
Filter Formulation

Measurement

\[y^*_k = B + SF g \cos \theta_k^* + K(g \cos \theta_k^*)^2 + g \cos \theta_K^* - g \cos \theta_K \]

Independent variable

\[x_k = g \cos \theta_k^* \]

Use second-order fit to data because measurement appears to be second-order

\[\hat{y}_k = a_0 + a_1 x_k + a_2 x_k^2 \]

Filter formula

\[
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2
\end{bmatrix} = \begin{bmatrix}
 n & \sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2 \\
 \sum_{k=1}^{n} x_k & \sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k^3 \\
 \sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k^3 & \sum_{k=1}^{n} x_k^4
\end{bmatrix}^{-1} \begin{bmatrix}
 \sum_{k=1}^{n} y_k^* \\
 \sum_{k=1}^{n} x_k y_k^* \\
 \sum_{k=1}^{n} x_k^2 y_k^*
\end{bmatrix}
\]

\[\hat{B} = a_0 \]

\[\hat{SF} = a_1 \]

\[\hat{K} = a_2 \]
Method of Least Squares Applied to Accelerometer Testing Problem - 1

BIAS=.00001*32.2;
SF=.000005;
XK=.000001/32.2;
SIGTH=0.;
G=32.2;
JJ=0;
count=0;
for THETDEG=0:2:180
 THET=THETDEG/57.3;
 THETNOISE=SIGTH*randn;
 THETS=THET+THETNOISE;
 JJ=JJ+1;
 T(JJ)=32.2*cos(THETS);
 X(JJ)=BIAS+SF*G*cos(THETS)+XK*(G*cos(THETS))^2-G*cos(THET)+G*cos(THETS);
end

N=JJ;
SUM1=0;
SUM2=0;
SUM3=0;
SUM4=0;
SUM5=0;
SUM6=0;
SUM7=0;
for I=1:JJ
 SUM1=SUM1+T(I);
 SUM2=SUM2+T(I)*T(I);
 SUM3=SUM3+X(I);
 SUM4=SUM4+T(I)*X(I);
 SUM5=SUM5+T(I)*T(I)*T(I);
 SUM6=SUM6+T(I)*T(I)*T(I)*T(I);
 SUM7=SUM7+T(I)*T(I)*X(I);
end

Generating measurement data
Method of Least Squares Applied to Accelerometer Testing Problem - 2

Second-order least squares filter

```matlab
A(1,1)=N;
A(1,2)=SUM1;
A(1,3)=SUM2;
A(2,1)=SUM1;
A(2,2)=SUM2;
A(2,3)=SUM5;
A(3,1)=SUM2;
A(3,2)=SUM5;
A(3,3)=SUM6;
AINV=inv(A);
B(1,1)=SUM3;
B(2,1)=SUM4;
B(3,1)=SUM7;
ANS=AINV*B
for JJ=1:N
    PZ(JJ)=ANS(1,1)+ANS(2,1)*T(JJ)+ANS(3,1)*T(JJ)*T(JJ);
    count=count+1;
    ArrayA(count)=T(JJ);
    ArrayB(count)=X(JJ);
    ArrayPZ(count)=PZ(JJ);
end
figure
plot(ArrayA,ArrayB,ArrayA,ArrayPZ),grid
xlabel('gcos(thet) (deg)')
ylabel('Measurement and Estimate')
axis([-35 35 0 .0005])
cle
output=[ArrayA',ArrayB',ArrayPZ'];
save datfil output -ascii
disp 'simulation finished'
```

Filter estimate

Fundamentals of Kalman Filtering: A Practical Approach
Without Measurement Noise We Can Estimate Accelerometer Errors Perfectly

\(B = 0.000322 \text{ ft/} \text{sec}^2 \)

\(SF = 5 \times 10^{-6} \)

\(K = 3.106 \times 10^{-8} \text{ sec}^2/\text{ft} \)

Truth

\(B = 0.00322 \text{ ft/sec}^2 \)

\(SF = 5 \times 10^{-6} \)

\(K = 3.106 \times 10^{-8} \text{ sec}^2/\text{ft} \)
With 1 \(\mu R \) of Measurement Noise We Can Nearly Estimate Accelerometer Errors Perfectly

Truth

\[B = 0.00322 \text{ ft/sec}^2 \]
\[SF = 5 \times 10^{-6} \]
\[K = 3.106 \times 10^{-8} \text{ sec}^2/\text{ft} \]
There is a Difference Between Truth and Estimates With 10 \(\mu \)R of Measurement Noise

Truth

\[B = 0.000322 \text{ ft/sec}^2 \]
\[SF = 5 \times 10^{-6} \]
\[K = 3.106 \times 10^{-8} \text{ sec}^2/\text{ft} \]

Measurement

\[B = 0.000308 \text{ ft/sec}^2 \]
\[SF = 4.51 \times 10^{-6} \]
\[K = 4.082 \times 10^{-8} \text{ sec}^2/\text{ft} \]
With 100 μR of Measurement Noise We Can Not Estimate Bias, Scale Factor Errors or G-Sensitive Drift

Truth

$B = 0.000322 \text{ ft/sec}^2$

$SF = 5 \times 10^{-6}$

$K = 3.106 \times 10^{-8} \text{ sec}^2/\text{ft}$
Method of Least Squares Summary

- Method of least squares is a batch processing method
 - All data has to be collected before estimates can be made
- Best to use filter order that is matched to signal order
 - If filter order is too low get divergence
 - If filter order is too high may be fitting noise rather than signal
- Batch processing formulas for various order least squares filters presented