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Comparison of Finite Memory and Kalman Filters
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/ Recall \

- A batch processing least squares filter and a Kalman filter are
equivalent when Kalman filter has zero process noise and infinite
initial covariance matrix

- A Kalman filter with zero process noise will have problems in the
real world because the Kalman gains eventually go to zero. This
means that the Kalman filter will no longer pay attention to
measurements

- If the filter only has to work for a short period of time (window),
having zero process noise might be ok
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Main Idea Behind Finite Memory Filter

l Pick Window Length

Collect Data
For Length
No of Window
|
Measurements Is Window
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eview of Least Squares Method For Second-Order
System-1

Fit measurement data with “best” parabola

§za0 +a1t+a2t2

Or in discrete form
Xk = ag + a1 (k-DT + ap[(k-1)T ]2

We still want to minimize residual R

n 2 n 2
R=D (Xe-x¢) = [ag +aj(k-DTg +ar(k-1)2Ts - x{]
k=1 k=1

We can expand R

R = (ag-x})* + [ap+a; Ts+ayT2-x3)]* + ... + [ao+a;(n-1)Tg+ar(n-1)2Te-x%]

Minimize R by setting derivatives to zero

gi): 0 = 2(ap-x)) +2[ap+a; Te+ar TZ-x5)] + ... + 2[a0+a1(n—I)Ts+a2(n—1)2T§—X;§]

oR Dk 22 %

Ja. =0 = 2[ap+a; Ts+ar Ts-x5)]T + ... + 2[ap+a;(n-1)Ts+ax(n-1)“T-x,](n-1)T;
1

R _o= 2[ag+a; Te+ay T2-x3)|T2 + ... + 2[ag+a; (n-D)Ts+ar(n-1)2Ts-x5](n-1)2T2

88.2
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Review of Least Squares Method For Second-Order
System-2

We can simplify preceding three equations

nag +alz (k-1)T +azz [(k-1)T,]? Z X

k=1 k=1
aoz (k-1)Ts +alz [(k-1)Ts] +azz [(k- 1)T = > (k-DTex
k=1

n

aoz [(k-1)Ts] +alz [(k-1)T] +azz [(k- 1)T = z [(k-1)T,]?

These equations can also be expressed in matrix form as

n 2 kDT 3 [(-DTP 2 X
k=1 k=1 k=1
n n n 1) n
> (-DT, Z [(k-DTJ? Z [(-DTP a5 Y keDTex,
k=1 k=1 k=1 a k=1
Z [(k-DT? D (kDT D [(k-DT > [(k-DTPxi
L. k=1 k=1 k=1 | L k=1 |

Fundamentals of Kalman Filtering: 20 -
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/Review of Least Squares Method For Second-Ord
System-3

We can solve for the coefficients by matrix inversion

n n -1 n
n > kDT, > [(k-DT,P > x
k=1 k=1 k=1
a0 n n n n .
a = D> DTy > (kDT D [(k-DTP > (k-DTex,
a k=1 k=1 k=1 k=1
[(k-DT,]? [(k-DTP D [k-DTl > [(k-DTPxi
L k=1 k=1 k=1 1 L k=1 _

K Fundamentals of Kalman Filtering:
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Simplify Notation

Let
i=k—1
L=n-1

Therefore each element in the matrix to be Inverted can be simplified

n=L+1=S§,

ii = Tsiz':O.STS[L(L+ D]=ST,

i=0

S k-nT=T,
k=1

i=1

L

i[(k— 1)7;]2 =T =T'Yi =T’ éL(L+ DL+ 1)]: S,T;
k=1 i=0 i=1 L
n 3 L L _1
- =1 puv=1")D 1 =1 |— + =
Z[(k 1)TS] TS%Z& ]—;32-3 ]—;3 4L2(L 1)2:‘ S3T;3
k=1 i=0 i=1 L
n 4 L
k-1 =12 it =1 Di*=T1" [%L(L +DQL +1)(3L +3L - 1)} S,T,)
k=1 i=0 i=1
Therefore we can express coefficients in sho
-1 Exj
ay So ST, Sszz S
a|=| ST, ST ST || Xilx
a, Sszz S3Tx3 S4Tx4 L
2T x
L =1 .

*Selby, S.M., “CRC Standard Mathematical Tables, 20th Edition,” The Chemical Rubber E

From Sums of Powers
Of the First n Integers*

rthand notation as

0., 1972, p.. 3 . .
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Evaluating Matrix Inverse-1

Recall that a 3x3 matrix inverse can be evaluated exactly
If

A =

abc
de f
g h i

Then exact inverse given by

ei-fh  ch-bi  bf-ec
gf-di ai-gc  dc-af
dh-ge gb-ah  ae-bd

Al = 1
ael + bfg + cdh - ceg - bdi - ath

Note that a matrix is a set of numbers that only has to be evaluated once

Numbers in matrix inverse do not depend on measurements

Fundamentals of Kalman Filtering:
A Practical Approach
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Evaluating Matrix Inverse-2

Recall
S, ST ST'| [a b ¢ ei—fh  ch—bi bf —ec
A=|sT s1’ ST |=|d ¢ f| and Alzﬁ of —di ai-gc dc—af
ST> ST ST'| |g h i dh—ge gb—ah ae—bd

Therefore
den=T'(S,S,S, —S,S; =SS, +25,5,5,— ;)

ei—fh T’

den :%

ch —bi _ TsS(S253_ S1S4) _

(5254 - S32) =G den den 2

bf —ec _ Ts4(S153_ S22)
den den -3

gf—di _ TsS(SzS.%_ 51S4) _

den den 2

de—af _T(S8,~5S;) _
den den 4 den den B

dh—ge _T'(SS:-5;) gb—ah _ T(SS,~5,5,)

ae—bd _ Tsz(Sosz - Slz)

den den 3

den den 5

den den o
Therefore Coefficients Become
, T Exj _ zxj
a So ST, ST, S a, G G G S
a|=| ST, ST7 ST’ || Xilx or a|=|C, C, C5| Dilx;
a,| |87 ST ST || L7 a,| |C, C. C| "
2 2 3 4 Z(iTy)zx; 2 3 5 6 Z(l'Ts)z)C:
L =1 | L i=l n

Fundamentals of Kalman Filtering:
A Practical Approach

20 -




Quadratic Finite Memory Filter-1

Collect measurements for certain period of time initially (Specify

window or L)

Evaluate quadratic coefficients

a, So ST, Sszz
a |=| ST, S,T; ST

S, T} ST ST

-1

-, -
.
Ex,.
=1
L
. *
levxi
i=1

=
D (T x;
L =1 i

At end of data collection period estimate states using coefficients

A 2
x=a,+LTag + (LTS) a,
x= a +2LTa,

X =2a,

Fundamentals of Kalman Filtering:
A Practical Approach
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/ Quadratic Finite Memory Filter-2

After initial data collection period, add new measurement and
eliminate oldest measurement and reevaluate

L

-, ; ;
, T Exj Exj
a So ST, ST, S a, G G G S
a|=| ST, 17 ST || Xitx or al=|C: ¢ G| Yilx
i=1 i=1
a, ST, ST ST L a, G G G w
t Xty YT) x;
= il L a1 i

Unchanged T
Changes Slightly

And get new estimate
i=a+LTa+(LT) a,

x= a +2LTa,

X =2a,

Qherefore this method appears to be a batch processing method

only for the initial data collection

Fundamentals of Kalman Filtering:
A Practical Approach
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Recall We Have Shown That a Quadratic Batch Processing
Least Squares Filter Can Be Made Recursive

Gains
3(3k2-3k+2) |
(ka2 D

O 18(2k-1)
2T k(k+ 1) (k+2)T,

Ky = 60
k(k+1)(k+2)T2

Filter

Resk = Xlt - /)Zk-l - Xk-lTs - 5 Xk_ng

g(\k = g(\k-l + Xi1 Ts + .SXk_ng+ KlkReSk

Xk = Xg-1 + Xk_ng+ szReSk

Xk = Xk-l + K3kResk

Therefore initial data collection period can be made recursive
so that estimates are always available

Fundamentals of Kalman Filtering:
A Practical Approach
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/ Estimate Acceleration With Filter \

Noise
Signal

S S Measurement

We Measure Noisy Position and Want to Estimate
Square Wave Acceleration

K Fundamentals of Kalman Filtering: X 13

A Practical Approach




U IC Fini y Fi -1

GLOBAL DEFINE

INCLUDE 'quickdraw.inc'
END
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 Z(1000)
OPEN(1,STATUS="UNKNOWN"FILE='DATFIL')
SIG=1. ] Noise Standard Deviation
XH=0.
XDH=0.
XDDH=0.
XL=140. Window Length
L=INT(XL)
TS=.1 : .
oKL Sampling Time —
S1=.5*XL*(XL+1.) Short Hand
S2=XL*(XL+1.)*(2.*XL+1.)/6. Terms in Matrix

S3=((XL*(XL+1.))**2)/4.
S4=XLA#(XLA+1 5 (25X L1.)#(3 ¥ XL¥XL43.#XL-1.)/30. | To Be Inverted

C1=S82*#S4-S3*S3 —
C2=82*%S3-S1*S4

C3=S1*S3-S2*S2 i ]
DEN=S0%S2%S4-S0*S3%*S3-S1*S 1¥S4+2.%S1%S2#§3-82%%3 Terms in Matrix
C4=80*S4-S2*S2 Inverse
C5=S1*S2-S0*S3
C6=S0*S2-S1*S1
XN=0.

XTD=0.

XT=0 Fundamentals of Kalman Filtering: 20-14

A Practical Approach



Quadratic Finite Memory Filter -2

DO 10 T=0.,100.,TS

XN=XN+1.
N=INT(XN) _
IF(T<25.)THEN
XTDD-=1.
ELSEIF(T<50.)THEN
XTDD=-1.
ELSEIF(T<75.)THEN
XTDD-=1.
ELSE
XTDD=-1.

ENDIF _
XTD=XTD+TS*XTDD

XT=XT+TS*XTD+.5*TS*TS*XTDD
CALL GAUSS(XNOISE,SIG)

XTMEAS 1=XT+XNOISE
Z(N)=XTMEAS 1]

Actual Acceleration

Euler Integration to Get
Velocity and Position

Noisy Measured Position

Save Measurements in Array

Fundamentals of Kalman Filtering:
A Practical Approach

Loop
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Quadratic Finite Memory Filter -3

IF(N<=(L+1))THEN

ELSE

ENDIF

XK 1=3#(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2))

XK2=18%(2*XN-1)/(XN*(XN+1)*(XN+2)*TS)
XK3=60/(XN*(XN+1)*(XN+2)*TS*TS)

RES=XTMEAS1-XH-TS*XDH-.5*TS*TS*XDDH
XH=XH+XDH*TS+.5*TS*TS*XDDH+XK1*RES

XDH=XDH+XDDH*TS+XK2*RES
XDDH=XDDH+XK3*RES
U=0.
V=0.
W=0.
DO 20 I=0,L
U=U+Z(N-L+I)
XI=FLOAT()
V=V+XT*Z(N-L+I)
W=W+XT*XT*Z(N-L+I)

CONTINUE |

A0=(C1¥U+C2*V+C3*W)/DEN
A1=(C2¥U+C4*V+C5%W)/(TS*DEN)
A2=(C3*U+C5*V+C6*W)/(TS*TS*DEN)
XH=A0+XL*TS*A1+XL*XL*TS*TS*A2
XDH=A1+2.%A2*XL*TS

XDDH=2.%A2

WRITE(@,*)T,XT,XH,XTD,XDH,XTDD,XDDH
WRITE(1,*)T,XT,XH,XTD,XDH,XTDD,XDDH

CONTINUE
CLOSE(1)
PAUSE
END

Initially Use Recursive
Least Squares
Filter Until Window
Is Filled

Evaluate Summations
By Adding New
Measurement and
Throwing Out Oldest

Calculate Coefficients
And Obtain State
Estimates

Fundamentals of Kalman Filtering: 20-16
A Practical Approach



Acceleration (ft/gd)

Acceleration Estimates For Different Window Size - 1

5 s Window (LT.=50*0.1=5) 7 s Window (LT.=70*0.1=7)

2 - 2
1 L % 1
E
5
0 - m O
o
[+
-1 = o -1
oI
* 7+
s
-2 |58 I I I T -2 I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Increasing window length removes noise but increases amount
of time required to estimate acceleration switching

Fundamentals of Kalman Filtering:
A Practical Approach
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/ Acceleration Estimates For Different Window Size - 2 \

10 s Window (LT.=100%0.1=10) 14 s Window (LT.=140%0.1=14)

Acceleration (ft/gd)
o
|
Acceleration (ft/gd)
o
|

<+—>
10s 14s

-2 I I B -2 I I I B

I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Increasing window length removes noise but increases amount

K of time required to estimate acceleration switching /
Fundamentals of Kalman Filtering: 20-18
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Important Matrices For 3-State Kalman Filter

Order | Continuous Q Fundamental Discrete Q
0 Q = @, (I)kzl Q. = @,
T T2
00 1T 3 2
q;{ } _[ 1T 32
1| Q=0] 4 q)"(oﬂ Q=
T? T
7 S
2
000 1 T, .5T2 3
21 Q=% 000 D= 0 1 T, Q=0 T T T
001 8 3 2
0 0 1
YR
L 6 2 s

Fundamentals of Kalman Filtering: 20-19
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/ 3-State Polynomial Kalman Filter - 1 \

For a 3-state polynomial Kalman filter we assume

=1
g

In state space form our model of the real world is

Measurement model

X
x*=[100] x |+V
"

Polynomial filter formulation

Fundamentals of Kalman Filtering: Xm

A Practical Approach



3-State Polynomial Kalman Filter - 2

Therefore the fundamental and measurement noise matrices are

1 T, .5T?
b, = 0 1 T, H=[1 0 0]
0 0 1

Recall Kalman filtering equation is given by
Xk = OpXy. + Ky (zk - HOX 1)

Substitution and simplification yields second-order polynomial Kalman
filter

RESk: X]t - /)Zk-l - Tsxk-l - .STng_l
g(\k = g(\k-l + TXg-1 + ) TgX'k_l + KlkRESk

Xk = X1 + TXk1 + KZkRESk

§k = ;Ek-l + K3kRESk

Gains obtained from Riccati equations ¢ O T
M. = O P, DL 20 8 6
k = DicPi 1P + Qi 2 o T T T
Ky = MHTHMgH” + Ry Ric=0on 8 3 2
T T
Py = (I - KgH)My 6 2
Fundamentals of Kalman Filtering: 20-21
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3-State Kaiman Filter -1
GLOBAL DEFINE

INCLUDE 'quickdraw.inc'
END
IMPLICIT REAL*8(A-H,0-7)
REAL*8 P(3,3),Q(3,3),M(3,3),PHI(3,3), HMAT(1,3),HT(3,1),PHIT(3,3)
REAL*8 RMAT(1,1),IDN(3,3),PHIP(3,3),PHIPPHIT(3,3),HM(1,3)
REAL*8 HMHT(1,1),HMHTR(1,1),HMHTRINV(1,1),MHT(3,1),K(3,1)
REAL*8 KH(23,3),IKH(3,3)
INTEGER ORDER
OPEN(1,STATUS="UNKNOWN'"FILE='DATFIL'")
ORDER =3
PHIS=.00001
TS=.1
XH=0. ] Initial State Estimates
XDH=0.
XDDH=0
SIGNOISE=1. B
DO 14 I=1,0RDER
E}(I)I(llf‘JL&’ORDER Zero Out Matrices Initially
P(1,1)=0.

Q(L,J)=0.
IDN(1,J)=0.

CONTINUE _ R Matrix
RMAT(1,1)=SIGNOISE**2 _]

IDN(1,1)=1. ] Identity Matrix

IDN(2,2)=1.
IDN(3,3)=1.

Fundamentals of Kalman Filtering:

A Practical Approach




3-State Kalman Filter - 2

P(1,1)=99999999999. |

P(2,2)=99999999999.
P(3,3)=99999999999.

PHI(1,1)=1 .

PHI(1,2)=TS
PHI(1,3)=.5*TS*TS
PHI(2,2)=1
PHI(2,3)=TS
PHI(3,3)=1
HMAT(1,1)=1.
HMAT(1,2)=0. ]
HMAT(1,3)=0.

CALL MATTRN(PHI,ORDER,ORDER,PHI
CALL MATTRN(HMAT,1,ORDER,HT)

Q(1,1)=PHIS*TS**5/20
Q(1,2)=PHIS*TS**4/8
Q(1,3)=PHIS*TS**3/6
Q2,H)=Q(1,2)
Q(2,2)=PHIS*TS**3/3
Q(2,3)=PHIS*TS*TS/2
Q@3,H=Q(1,3)
Q(3,2)=Q(2,3)
Q(3,3)=PHIS*TS
XD=0.

X=0.

Initial Covariance Matrix

Fundamental Matrix, ®

H Matrix

Q Matrix

Tj ®T and HT

Fundamentals of Kalman Filtering:

A Practical Approach
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10

3-State Kalman Filter - 3

DO 10 T=0.,100.,TS -
CALL MATMUL(PHI,ORDER,ORDER,P,ORDER,ORDER,PHIP)
CALL MATMUL(PHIP,ORDER,ORDER,PHIT,ORDER,ORDER,PHIPPHIT)

CALL MATADD(PHIPPHIT,ORDER,ORDER,Q.,M) R i C atti

CALL MATMUL(HMAT,1,0RDER,M,ORDER,ORDER HM)

CALL MATMUL(HM,1,0RDER,HT,ORDER, |, HMHT) Equations

CALL MATADD(HMHT, 1,1, RMAT,HMHTR)

HMHTRINV(1,1)=1/HMHTR(1,1)

CALL MATMUL(M,0ORDER,ORDER,HT,ORDER, |, MHT)

CALL MATMUL(MHT,ORDER, |, HMHTRINV, 1,1,K)

CALL MATMUL(K,ORDER,1,HMAT,1,0RDER ,KH)

CALL MATSUB(IDN,ORDER,ORDER ,KH,IKH)

CALL MATMUL(IKH,0RDER,ORDER,M,ORDER,ORDER,P)

CALL GAUSS(XNOISE,SIGNOISE)

IF(T<25.)THEN 7
XDD=1.

ELSEIF(T<50.)THEN

XDD=-1. .
ELSEIF(T<75.)THEN Actual Acceleration

XDD=1.
ELSE

XDD=-1.
ENDIF _ .
XD=XD+TS*XDD ] Euler Integration to Get
X=X+TS*XD+.5*TS*TS*XDD = g m
XS=X+XNOISE Velocity and Position
RES=XS-XH-TS*XDH-.5*TS*TS*XDDH Measu rement and

XH=XH+XDH*TS+.5*TS*TS*XDDH+K(1,1)*RES

XDH=XDH+XDDH*TS+K(2,1)*RES Kalman Filter

XDDH=XDDH+K(3,1)*RES
WRITE(9,*)T,X,XH,XD,XDH,XDD,XDDH
WRITE(1,*)T,X,XH,XD,XDH,XDD,XDDH

CONTINUE

PAUSE

CLOSE(1)

END

A Practical Approach

Fundamentals of Kalman Filtering:
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Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 1

Acceleration (ft/gd)

o _=1 ®_=0.1

Acceleration (ft/gd)
o
|

. m

o -

|
20

I I -2 T I I I I T
40 60 80 100 0 20 40 60 80 100

Time (s) Time (s)

Decreasing process noise reduces noise on acceleration estimate

.

Fundamentals of Kalman Filtering: / 25
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Acceleration (ft/gd)

Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 2

®,=0.01 ®_=0.001
2 - 2
1 L B 1
E
5
0 = m O
o
[+
Ll 8
1 B o -1
'2_1' I I I I T -2 I I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Decreasing process noise further reduces noise on acceleration estimate
increases amount of time required to estimate acceleration switching

Fundamentals of Kalman Filtering:
A Practical Approach
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Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 3

$_=0.0001 $_=0.00001

Acceleration (ft/gd)
o
|
Acceleration (ft/gd)
o
|

-2 T I I I — -2 T I I I —

I I I I
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Decreasing process noise even further eliminates noise but acceleration
estimate does not track actual acceleration

Fundamentals of Kalman Filtering:
A Practical Approach
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/ “Best” Acceleration Estimate Comparison \

3 State Kalman Filter
$_=0.001
2 _
E
s
w 0 B
o
[+
0 -1
o 1- |
'2_T I I I I T
0 20 40 60 80 100
Time (s)

Acceleration (ft/gd)

10 s Window (LT_,=100*0.1=10)

Finite Memory

0 20

| | | |
40 60 80 100

Time (s)

Finite memory filter yields better estimates when there are

K abrupt changes in acceleration

Fundamentals of Kalman Filtering: X 28
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Draper Prize

Charles Stark Draper Prize (Print This)

It is a goal of the National Academy of Engineering to honor those
who have contributed to the advancement of engineering and to
improve public understanding of the importance of engineering
and technology.

Recognized as one of the world's preeminent awards for
engineering achievement, the Charles Stark Draper Prize honors
an engineer whose accomplishment has significantly impacted
society by improving the quality of Ife, providing the ahility to live
freely and comfortably, and/or permitting the accessto
information.

The Draper Prize is awarded annually, the recipient receives a $500,000 cash award, and the
prize recognizes achievements in all engineering disciplines. NAE members and non-members
worldwide are eligible to receive the Draper Prize.

Fundamentals of Kalman Filtering:
A Practical Approach
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Previous Recipients of Draper Prize

2007: Tim othy BEemers-Lee for developing the World Wide YWeb.

2006: Willard 5. Boye and George E. Smith for the invention ofthe Charge-Coupled Device (CCD), a light-
sensitive com ponent at the heart of digital cameras and other widely used imaging technologies.

2005: Minoru S. "Sam" Araki, Francis J. Madden, Edward & Miller, James'W. Plummer and Don H. Schoessler
for the design, development, and operation of Corona, the first space-based Earth observation system.

2004: Alan C. Kay, Butler W, Lampson, Robert W, Tavlor, and Charles P. Thacker for the vision, conception, and
development ofthe first practical networked personal computers.

2003: |van A, Getting® and Bradford W. P arkinson forthe concept and development ofthe Global Positioning
System (GPS).

2002: Robert Langer forthe bioengineeting of revolutionary medical drug delivery systems.

2001: Vinton G. Cerf, Robert E. Kahn, Leonard Kleinrock , and Lawrence G. Roberts forthe development ofthe
Internet.

1999: Charles K. Kao, Robett D. Maurer, and John B. MacChesney forthe development of fiber optics.

1997: ‘adimir Haensel* for hisinvention ofthe PlatformingTM process.

1995 John R. Pierce* and Harold &. Rosen for their development of com munication satellite technology.

1993: John Backus* for his development of FORTR AN, the fira widely used, general purpose, highdevel
computer language.

1991: Sir Frank Whittle* and Hans J.P. von Ohain* for their independent developm ent of the turbojet engine.

1989: Jack S Kilby* and Robert M. Noyce* for their independent developm ent of the monolithic integrated circuit.

A Practical Approach

Fundamentals of Kalman Filtering:
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My Nominating Letter For Dr. Kalman - 1

Dr. Robert W. Bass

45960 Indian Way

#612

Lexington Park, MD 20653

Dear Dr. Bass

In the past the Draper Prize has mainly been awarded for significant hardware
developments that have influenced the world. In 1993 John Backus was awarded the
Draper Prize for his development of FORTRAN which was a revolutionary software
development for the time. Although FORTRAN is still in use today it has taken the back
seat to other computer languages. The Kalman filter can also be considered to be a
software development, but unlike FORTRAN, it is even more popular today than it was
44 years ago when it was invented. There are still no serious software filtering rivals to
the Kalman filter. In fact many of the software innovations which were required from the
1960’s through the 1980’s for the practical implementation of the Kalman filter are no
longer required today because of the advances in computer technology. In other words,
the Kalman filter is even easier to implement today than it was years ago.

I also believe that the development of the Kalman filter also satisfies each of the
criteria developed by the Draper Prize Committee. For example

* Anybody who uses a GPS receiver or flies in a commercial aircraft benefits from the
Kalman filter

* The idea that filtering could be done systematically was a breakthrough during the
1960’s because most filtering schemes were ad hoc at the time. I believe the original
paper on Kalman filtering was first rejected by the IEEE journals because they felt the
idea behind the paper could not possibly be true.

* The Wiener filter was a popular theoretical filter before the Kalman filter. Its only
disadvantage was that engineers could not apply it to practical problems because of the
complex equations in the frequency domain that had to be solved. The Kalman filter was
a straight forward time domain algorithm for solving the filtering problem. In fact today
it can be shown that the Wiener filter is a subset of the Kalman filter.

Fundamentals of Kalman Filtering:

A Practical Approach
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My Nominating Letter For Dr. Kalman - 2

* The richness in the technical ramifications of the Kalman filter were enormous. Even
if one forgets about all the filtering ramifications new insights were gained in the field of
optimal control because it is actually related to the dual of the filtering problem. Kalman
filtering also popularized the statistical analysis technique of covariance analysis. In fact
the Kalman filter automatically provides internal estimates of how well it is doing by
using covariance analysis.

* The follow-through in the Kalman filter after it was developed was also enormous.
Practical innovations were made to get the filtering algorithm to work on the primitive
computers of the time. In recent years computer technology has developed to the point
where most, if not all, of the innovations are no longer necessary because often the
original Kalman filter works quite well on modern flight computers.

* The economic impact of the Kalman filter is difficult to quantify but it must be
measured at least in billions or possibly trillions of dollars.

To further clarify why I think that Dr. Kalman should receive the Draper prize I have
included some exhibits which go in to more explicit detail on the importance of Kalman
filtering. two testimonials from Dr. Fred Daum and Dr. Howard Musoff. I totally agree
with Dr. Fred Daum’s testimonial in regard to the importance of the invention of the
Kalman filter and to Dr. Howard Musoff’s testimonial in regard to the importance of
Kalman filtering to inertial navigation systems. In addition, I was personally involved
with one of the first successful implementations of the Kalman filter to a homing missile
guidance system during the 1960’s. On a personal note, Howard died this week and I
know he was honored in being asked to provide information that might enable Dr.
Kalman to receive the Draper Prize.

I believe that the award of the Draper Prize to Dr. Kalman will be consistent with the
excellent choices that have already been made by the Charles Stark Draper Prize
selection committee since the award’s inception.

Sincerely yours

Paul Zarchan
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$500,000 Prize Announced on Web
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2008 Charles Stark Draper Prize Recipient (Print This)

The 2008 Recipient of the Charles Stark Draper Prize will be awarded to Rudolf Kalman "for the
devlopment and dissemination of the optimal digital technique (known as the Kalman Fiker) that
is pervasively used to control a vast array of consumer, health, commercial and defense
products.

The Kalman Filter uses amathematical technique that removes "noise" rom series of data
From incomplete information, it can optimally estimate and control the state of a changing,
complex system over ime. The Kaman filter re volutionized the field of control theory and has
become pervasive in engineering systems. It has been applied to systems and devicesin nearly
dl engineering fields and continues to find new uses today. Applications include target tracking
by radar, globd positioning systems, hydrological modeling, atmospheric observaions, time-
series andyses in econometrics, and automated drug delivery.

Dr. Rudolf Kalman

Biography
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