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Comparison of Finite Memory and Kalman Filters
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Recall

•   A batch processing least squares filter and a Kalman filter are
equivalent when Kalman filter has zero process noise and infinite
initial covariance matrix
•   A Kalman filter with zero process noise will have problems in the 
real world because the Kalman gains eventually go to zero.  This
means that the Kalman filter will no longer pay attention to
measurements
•   If the filter only has to work for a short period of time (window),
having zero process noise might be ok



20 - 3Fundamentals of Kalman Filtering:
A Practical Approach

Main Idea Behind Finite Memory Filter
Pick Window Length
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Review of Least Squares Method For Second-Order
System-1

Fit measurement data with “best” parabola

Or in discrete form

We still want to minimize residual R

We can expand R

Minimize R by setting derivatives to zero

x = a0 + a1t + a2t2
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Review of Least Squares Method For Second-Order
System-2

We can simplify preceding three equations

These equations can also be expressed in matrix form as
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Review of Least Squares Method For Second-Order
System-3

We can solve for the coefficients by matrix inversion
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Simplify Notation
Let

� 

i = k !1
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Therefore each element in the matrix to be Inverted can be simplified
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Therefore we can express coefficients in shorthand notation as

From Sums of Powers
Of the First n Integers*

*Selby, S.M., “CRC Standard Mathematical Tables, 20th Edition,” The Chemical Rubber Co., 1972, p. 37
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Evaluating Matrix Inverse-1

Recall that a 3x3 matrix inverse can be evaluated exactly

A = 
a b c

d e f

g h i

A-1 = 1
aei + bfg + cdh - ceg - bdi - afh

 

ei-fh  ch-bi  bf-ec

gf-di  ai-gc  dc-af

dh-ge  gb-ah   ae-bd

If

Then exact inverse given by

Note that a matrix is a set of numbers that only has to be evaluated once

Numbers in matrix inverse do not depend on measurements
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Evaluating Matrix Inverse-2
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Quadratic Finite Memory Filter-1

Collect measurements for certain period of time initially (Specify
window or L)
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Quadratic Finite Memory Filter-2

After initial data collection period, add new measurement and
eliminate oldest measurement and reevaluate
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Recall We Have Shown That a Quadratic Batch Processing
Least Squares Filter Can Be Made Recursive

Filter

Gains
K1k

 = 
3(3k2-3k+2)

k(k+1)(k+2)
   k=1,2,...,n

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2

Resk = xk
* - xk-1 - xk-1Ts - .5xk-1Ts

2

xk = xk-1 + xk-1Ts + .5xk-1Ts
2+ K1k

Resk

xk = xk-1 + xk-1Ts
2+ K2k

Resk 

xk = xk-1 + K3k
Resk

Therefore initial data collection period can be made recursive
so that estimates are always available 
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Estimate Acceleration With Filter

We Measure Noisy Position and Want to Estimate
Square Wave Acceleration
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GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 Z(1000)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
SIG=1.
XH=0.
XDH=0.
XDDH=0.
XL=140.
L=INT(XL)
TS=.1
S0=XL+1.
S1=.5*XL*(XL+1.)
S2=XL*(XL+1.)*(2.*XL+1.)/6.
S3=((XL*(XL+1.))**2)/4.
S4=XL*(XL+1.)*(2.*XL+1.)*(3.*XL*XL+3.*XL-1.)/30.
C1=S2*S4-S3*S3
C2=S2*S3-S1*S4
C3=S1*S3-S2*S2
DEN=S0*S2*S4-S0*S3*S3-S1*S1*S4+2.*S1*S2*S3-S2**3
C4=S0*S4-S2*S2
C5=S1*S2-S0*S3
C6=S0*S2-S1*S1
XN=0.
XTD=0.
XT=0.

Quadratic Finite Memory Filter -1

Window Length

Short Hand
Terms in Matrix
To Be Inverted

Noise Standard Deviation

Sampling Time

Terms in Matrix
Inverse
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DO 10 T=0.,100.,TS
XN=XN+1.
N=INT(XN)
IF(T<25.)THEN

XTDD=1.
ELSEIF(T<50.)THEN

XTDD=-1.
ELSEIF(T<75.)THEN

XTDD=1.
ELSE

XTDD=-1.
ENDIF
XTD=XTD+TS*XTDD
XT=XT+TS*XTD+.5*TS*TS*XTDD
CALL GAUSS(XNOISE,SIG)
XTMEAS1=XT+XNOISE
Z(N)=XTMEAS1

Quadratic Finite Memory Filter -2

Actual Acceleration

Euler Integration to Get
Velocity and Position

Noisy Measured Position

Save Measurements in Array

Loop
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IF(N<=(L+1))THEN
XK1=3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2))
XK2=18*(2*XN-1)/(XN*(XN+1)*(XN+2)*TS)
XK3=60/(XN*(XN+1)*(XN+2)*TS*TS)
RES=XTMEAS1-XH-TS*XDH-.5*TS*TS*XDDH
XH=XH+XDH*TS+.5*TS*TS*XDDH+XK1*RES
XDH=XDH+XDDH*TS+XK2*RES
XDDH=XDDH+XK3*RES

ELSE
U=0.
V=0.
W=0.
DO 20 I=0,L

U=U+Z(N-L+I)
XI=FLOAT(I)
V=V+XI*Z(N-L+I)
W=W+XI*XI*Z(N-L+I)

 20 CONTINUE
 A0=(C1*U+C2*V+C3*W)/DEN

A1=(C2*U+C4*V+C5*W)/(TS*DEN)
A2=(C3*U+C5*V+C6*W)/(TS*TS*DEN)
XH=A0+XL*TS*A1+XL*XL*TS*TS*A2
XDH=A1+2.*A2*XL*TS
XDDH=2.*A2

ENDIF
WRITE(9,*)T,XT,XH,XTD,XDH,XTDD,XDDH
WRITE(1,*)T,XT,XH,XTD,XDH,XTDD,XDDH

 10 CONTINUE
 CLOSE(1)

PAUSE
END

Quadratic Finite Memory Filter -3
Initially Use Recursive

Least Squares
Filter Until Window

Is Filled

Evaluate Summations
By Adding New

Measurement and
Throwing Out Oldest

Calculate Coefficients
And Obtain State

Estimates
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Acceleration Estimates For Different Window Size - 1

-2

-1

0

1

2

100806040200
Time (s)

5 s Window (LTs=50*0.1=5) 7 s Window (LTs=70*0.1=7)

-2

-1

0

1

2

100806040200
Time (s)

Increasing window length removes noise but increases amount
of time required to estimate acceleration switching

7 s5 s
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Acceleration Estimates For Different Window Size - 2

10 s Window (LTs=100*0.1=10) 14 s Window (LTs=140*0.1=14)

-2

-1

0

1

2

100806040200
Time (s)

-2

-1

0

1

2

100806040200
Time (s)

Increasing window length removes noise but increases amount
of time required to estimate acceleration switching

10 s 14 s
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Important Matrices For 3-State Kalman Filter

Order Continuous Q Fundamental Discrete Q
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3-State Polynomial Kalman Filter - 1

For a 3-state polynomial Kalman filter we assume

In state space form our model of the real world is

Polynomial filter formulation

Measurement model
x* = 1 0 0  

x

x

x

 + v
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3-State Polynomial Kalman Filter - 2

Recall Kalman filtering equation is given by
xk  = !kxk -1 + K k(zk - H!kxk -1)

Substitution and simplification yields second-order polynomial Kalman
filter

Gains obtained from Riccati equations
Mk = !kPk -1!k

T
 + Qk

Kk = MkH
T(HMkH

T
 + Rk)

-1

Pk = (I - K kH)Mk

Rk = !n
2

Therefore the fundamental and measurement noise matrices are

!k = 

1 Ts .5Ts
2

0 1 Ts

0 0 1

H = [1   0   0]

RESk= xk
*  - xk-1 - Tsxk-1 - .5Ts

2 xk-1
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2xk-1 + K1k
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xk = xk-1 + K3k
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GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 P(3,3),Q(3,3),M(3,3),PHI(3,3),HMAT(1,3),HT(3,1),PHIT(3,3)
REAL*8 RMAT(1,1),IDN(3,3),PHIP(3,3),PHIPPHIT(3,3),HM(1,3)
REAL*8 HMHT(1,1),HMHTR(1,1),HMHTRINV(1,1),MHT(3,1),K(3,1)
REAL*8 KH(23,3),IKH(3,3)
INTEGER ORDER
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER =3
PHIS=.00001
TS=.1
XH=0.
XDH=0.
XDDH=0
SIGNOISE=1.
DO 14 I=1,ORDER
DO 14 J=1,ORDER
PHI(I,J)=0.
P(I,J)=0.
Q(I,J)=0.
IDN(I,J)=0.

 14 CONTINUE
 RMAT(1,1)=SIGNOISE**2

IDN(1,1)=1.
 IDN(2,2)=1.

IDN(3,3)=1.

3-State Kalman Filter - 1

Initial State Estimates

Zero Out Matrices Initially

R Matrix

Identity Matrix
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P(1,1)=99999999999.
 P(2,2)=99999999999.

P(3,3)=99999999999.
PHI(1,1)=1
PHI(1,2)=TS
PHI(1,3)=.5*TS*TS
PHI(2,2)=1
PHI(2,3)=TS
PHI(3,3)=1
HMAT(1,1)=1.
HMAT(1,2)=0.
HMAT(1,3)=0.
CALL MATTRN(PHI,ORDER,ORDER,PHIT)
CALL MATTRN(HMAT,1,ORDER,HT)
Q(1,1)=PHIS*TS**5/20
Q(1,2)=PHIS*TS**4/8
Q(1,3)=PHIS*TS**3/6
Q(2,1)=Q(1,2)
Q(2,2)=PHIS*TS**3/3
Q(2,3)=PHIS*TS*TS/2
Q(3,1)=Q(1,3)
Q(3,2)=Q(2,3)
Q(3,3)=PHIS*TS
XD=0.
X=0.

3-State Kalman Filter - 2

Initial Covariance Matrix

Fundamental Matrix, Φ

H Matrix

ΦT and HT

Q Matrix
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DO 10 T=0.,100.,TS
CALL MATMUL(PHI,ORDER,ORDER,P,ORDER,ORDER,PHIP)
CALL MATMUL(PHIP,ORDER,ORDER,PHIT,ORDER,ORDER,PHIPPHIT)
CALL MATADD(PHIPPHIT,ORDER,ORDER,Q,M)
CALL MATMUL(HMAT,1,ORDER,M,ORDER,ORDER,HM)
CALL MATMUL(HM,1,ORDER,HT,ORDER,1,HMHT)
CALL MATADD(HMHT,1,1,RMAT,HMHTR)
HMHTRINV(1,1)=1./HMHTR(1,1)
CALL MATMUL(M,ORDER,ORDER,HT,ORDER,1,MHT)
CALL MATMUL(MHT,ORDER,1,HMHTRINV,1,1,K)
CALL MATMUL(K,ORDER,1,HMAT,1,ORDER,KH)
CALL MATSUB(IDN,ORDER,ORDER,KH,IKH)
CALL MATMUL(IKH,ORDER,ORDER,M,ORDER,ORDER,P)
CALL GAUSS(XNOISE,SIGNOISE)
IF(T<25.)THEN

XDD=1.
ELSEIF(T<50.)THEN

XDD=-1.
ELSEIF(T<75.)THEN

XDD=1.
ELSE

XDD=-1.
ENDIF
XD=XD+TS*XDD
X=X+TS*XD+.5*TS*TS*XDD
XS=X+XNOISE
RES=XS-XH-TS*XDH-.5*TS*TS*XDDH
XH=XH+XDH*TS+.5*TS*TS*XDDH+K(1,1)*RES
XDH=XDH+XDDH*TS+K(2,1)*RES
XDDH=XDDH+K(3,1)*RES
WRITE(9,*)T,X,XH,XD,XDH,XDD,XDDH
WRITE(1,*)T,X,XH,XD,XDH,XDD,XDDH

 10 CONTINUE
PAUSE
CLOSE(1)
END

3-State Kalman Filter - 3

Ricatti
Equations

Actual Acceleration

Euler Integration to Get
Velocity and Position

Measurement and
Kalman Filter

Loop
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Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 1

Φs=1 Φs=0.1
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Decreasing process noise reduces noise on acceleration estimate
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Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 2

Φs=0.01 Φs=0.001
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Decreasing process noise further reduces noise on acceleration estimate
increases amount of time required to estimate acceleration switching
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Acceleration Estimates of 3-State Kalman Filter For Different
Values of Process Noise - 3

Φs=0.0001 Φs=0.00001
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Decreasing process noise even further eliminates noise but acceleration
estimate does not track actual acceleration
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“Best” Acceleration Estimate Comparison

10 s Window (LTs=100*0.1=10)
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3 State Kalman Filter

Finite memory filter yields better estimates when there are
abrupt changes in acceleration
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Previous Recipients of Draper Prize
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My Nominating Letter For Dr. Kalman - 1
Dr. Robert W. Bass

45960 Indian Way

#612

Lexington Park, MD 20653

Dear Dr. Bass

     In the past the Draper Prize has mainly been awarded for significant hardware

developments that have influenced the world. In 1993 John Backus was awarded the

Draper Prize for his development of FORTRAN which was a revolutionary software

development for the time. Although FORTRAN is still in use today it has taken the back

seat to other computer languages. The Kalman filter can also be considered to be a

software development, but unlike FORTRAN, it is even more popular today than it was

44 years ago when it was invented. There are still no serious software filtering rivals to

the Kalman filter. In fact many of the software innovations which were required from the

1960’s through the 1980’s for the practical implementation of the Kalman filter are no

longer required today because of the advances in computer technology. In other words,

the Kalman filter is even easier to implement today than it was years ago.

     I also believe that the development of the Kalman filter also satisfies each of the

criteria developed by the Draper Prize Committee. For example

• Anybody who uses a GPS receiver or flies in a commercial aircraft benefits from the

Kalman filter

•   The idea that filtering could be done systematically was a breakthrough during the

1960’s because most filtering schemes were ad hoc at the time.  I believe the original

paper on Kalman filtering was first rejected by the IEEE journals because they felt the

idea behind the paper could not possibly be true.

•   The Wiener filter was a popular theoretical filter before the Kalman filter. Its only

disadvantage was that engineers could not apply it to practical problems because of the

complex equations in the frequency domain that had to be solved. The Kalman filter was

a straight forward time domain algorithm for solving the filtering problem. In fact today

it can be shown that the Wiener filter is a subset of the Kalman filter.
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My Nominating Letter For Dr. Kalman - 2
•   The richness in the technical ramifications of the Kalman filter were enormous. Even

if one forgets about all the filtering ramifications new insights were gained in the field of

optimal control because it is actually related to the dual of the filtering problem. Kalman

filtering also popularized the statistical analysis technique of covariance analysis. In fact

the Kalman filter automatically provides internal estimates of how well it is doing by

using covariance analysis.

• The follow-through in the Kalman filter after it was developed was also enormous.

Practical innovations were made to get the filtering algorithm to work on the primitive

computers of the time. In recent years computer technology has developed to the point

where most, if not all, of the innovations are no longer necessary because often the

original Kalman filter works quite well on modern flight computers.

•   The economic impact of the Kalman filter is difficult to quantify but it must be

measured at least in billions or possibly trillions of dollars.

     To further clarify why I think that Dr. Kalman should receive the Draper prize I have

included some exhibits which go in to more explicit detail on the importance of Kalman

filtering. two testimonials from Dr. Fred Daum and Dr. Howard Musoff. I totally agree

with Dr. Fred Daum’s testimonial in regard to the importance of the invention of the

Kalman filter and to Dr. Howard Musoff’s testimonial in regard to the importance of

Kalman filtering to inertial navigation systems. In addition, I was personally involved

with one of the first successful implementations of the Kalman filter to a homing missile

guidance system during the 1960’s. On a personal note, Howard died this week and I

know he was honored in being asked to provide information that might enable Dr.

Kalman to receive the Draper Prize.

     I believe that the award of the Draper Prize to Dr. Kalman will be consistent with the

excellent choices that have already been made by the Charles Stark Draper Prize

selection committee since the award’s inception.

Sincerely yours

Paul Zarchan
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$500,000 Prize Announced on Web
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At Award Ceremony in DC


