Stereo Tracking of Cannon Launched Projectile

21 - 2

Previous Results From Extended Cartesian Kalman Filter For Radar Tracking Problem With Great Initialization $(T_s=1 s, \sigma_B=100 ft, \sigma_{\theta}=.01 r)$

Same Extended Cartesian Kalman Filter For Radar Tracking Problem With Different Inputs $(T_s=1 s, \sigma_R=2 ft, \sigma_{\theta}=.001 r)$

What if We Had a Sensor With No Range Measurement But Much Better Angle Measurement

- Usually one angle only sensor is not sufficient for estimating target position and velocity in a timely fashion
- Two angle only sensors are required to triangulate on the target to get target position and velocity quickly. This is known as stereo tracking

Expressing Target Location in Terms of Sensor Angles

From previous slide

 $\tan \theta_1 = \frac{y_T}{x_T - x_{R1}} \quad and \quad \tan \theta_2 = \frac{y_T}{x_T - x_{R2}}$

After some algebraic manipulation we find that

$$x_T = \frac{x_{R1} \tan \theta_1 - x_{R2} \tan \theta_2}{\tan \theta_1 - \tan \theta_2}$$

$$y_T = \frac{\tan \theta_1 \tan \theta_2 (x_{R1} - x_{R2})}{\tan \theta_1 - \tan \theta_2}$$

Although we are actually measuring θ_1 and θ_2 we can pretend we are measuring x_T and y_T

We will build two linear polynomial Kalman filters in x and y. We need To find the variance of the pseudo noise in x and y.

From the chain rule we can say that

$$\Delta x_T = \frac{\partial x_T}{\partial \theta_1} \Delta \theta_1 + \frac{\partial x_T}{\partial \theta_2} \Delta \theta_2$$
$$\Delta y_T = \frac{\partial y_T}{\partial \theta_1} \Delta \theta_1 + \frac{\partial y_T}{\partial \theta_2} \Delta \theta_2$$

Fundamentals of Kalman Filtering: A Practical Approach

Deriving Pseudo Measurement Variances - 1

From

$$x_T = \frac{x_{R1} \tan \theta_1 - x_{R2} \tan \theta_2}{\tan \theta_1 - \tan \theta_2}$$

the partial derivatives required for the first equation of the chain rule are

$$\frac{\partial x_T}{\partial \theta_1} = \frac{\tan \theta_2 (x_{R2} - x_{R1})}{\cos^2 \theta_1 (\tan \theta_1 - \tan \theta_2)^2}$$
$$\frac{\partial x_T}{\partial \theta_2} = \frac{\tan \theta_1 (x_{R1} - x_{R2})}{\cos^2 \theta_1 (\tan \theta_1 - \tan \theta_2)^2}$$

Since

$$\Delta x_T = \frac{\partial x_T}{\partial \theta_1} \Delta \theta_1 + \frac{\partial x_T}{\partial \theta_2} \Delta \theta_2$$

The variance of the measurement noise in downrange can be found by squaring and taking expectations of the above equation yielding

$$\boldsymbol{\sigma}_{x_T}^2 = \left(\frac{\partial x_T}{\partial \boldsymbol{\theta}_1} \boldsymbol{\sigma}_{\boldsymbol{\theta}_1}\right)^2 + \left(\frac{\partial x_T}{\partial \boldsymbol{\theta}_2} \boldsymbol{\sigma}_{\boldsymbol{\theta}_2}\right)^2$$

Fundamentals of Kalman Filtering: A Practical Approach

Deriving Pseudo Measurement Variances - 2

From

$$y_T = \frac{\tan\theta_1 \tan\theta_2 (x_{R1} - x_{R2})}{\tan\theta_1 - \tan\theta_2}$$

the partial derivatives required for the second equation of the chain rule are

$$\frac{\partial y_T}{\partial \theta_1} = \frac{-\tan^2 \theta_2 (x_{R1} - x_{R2})}{\cos^2 \theta_1 (\tan \theta_1 - \tan \theta_2)^2}$$
$$\frac{\partial y_T}{\partial \theta_2} = \frac{\tan^2 \theta_1 (x_{R1} - x_{R2})}{\cos^2 \theta_1 (\tan \theta_1 - \tan \theta_2)^2}$$

Since

$$\Delta y_T = \frac{\partial y_T}{\partial \theta_1} \Delta \theta_1 + \frac{\partial y_T}{\partial \theta_2} \Delta \theta_2$$

The variance of the measurement noise in altitude can be found by squaring and taking expectations of the above equation yielding

$$\boldsymbol{\sigma}_{y_T}^2 = \left(\frac{\partial y_T}{\partial \boldsymbol{\theta}_1} \boldsymbol{\sigma}_{\boldsymbol{\theta}_1}\right)^2 + \left(\frac{\partial y_T}{\partial \boldsymbol{\theta}_2} \boldsymbol{\sigma}_{\boldsymbol{\theta}_2}\right)^2$$

Fundamentals of Kalman Filtering: A Practical Approach

Decoupled Stereo Tracking Kalman Filters-1

21 - 10

Decoupled Stereo Tracking Kalman Filters -2

Decoupled Stereo Tracking Kalman Filters -3

Stereo Tracking With 2 Decoupled Linear Polynomial Kalman Filters - Poor Initialization $(T_s=1 \text{ s}, \sigma_{\theta 1}=.0001 \text{ r}, \sigma_{\theta 2}=.0001 \text{ r})$

21 - 18

