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What is the Cramer-Rao Lower Bound (CRLB) and
What Does it Mean?

According to Bar Shalom*
- “The mean square error corresponding to the estimator
  of a parameter cannot be smaller than a certain quantity
  related to the likelihood function”
- “If an estimatorʼs variance is equal to the CRLB, then the
   estimator is called efficient”

Formula for CRLB found in many texts
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What does this mean and how do I program it?
What does Zarchan say about the utility of the CRLB?

 “If an estimatorʼs variance is equal to the CRLB, then perhaps
the estimator is called not practical”

*Bar-Shalom, Y., Li,X. and Kirubarajan, T., “Estimation With Applications to Tracking and Navigation, Theory Algorithms
And Software,” John Wiley & Sons, Inc., New York, 2001, pp 109-110.
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Cramer-Rao Lower Bound (CRLB) as an Algorithm
It can be shown* in a more understandable way that according to the
CRLB the best a least squares filter can do is given by
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Where P is the covariance matrix, Φ is the fundamental matrix, H is
the measurement matrix and R is the measurement noise matrix.
P represents the smallest error in the estimate that is possible.
The above equation can be improved slightly to make it easier to
program. Let
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A
k

= !
T( )

"1

A
k"1
!

"1

+ H
T
R

"1

H

The initial condition on the preceding matrix difference equation is
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*Taylor, J.H., “The Cramer-Rao Estimation Error Lower Bound Computation for Deterministic Nonlinear Systems,” IEEE Transactions
On Automatic Control, Vol. AC-24, No. 2, April 1979, pp 343-344.
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How Does the Cramer-Rao Lower Bound (CRLB)
Relate to Our Recursive Least Squares Filter?

•   We have studied recursive least squares filters and found their gains and
    formulas predicting their performance. 
•   We know that a linear polynomial Kalman filter with zero process noise
    and infinite initial covariance matrix is identical to the recursive least
    squares filter. 
•   The recursive least squares filter also represents the best a filter can do. 

Does the CRLB formula yield the same answers as can be obtained
by examining the covariance matrix of the recursive least squares filter?
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Recall Recursive Least Squares Filter Structure and
Gains For Different Order Systems

1 State

Filter Gains

Resk = xk
* - xk-1 

xk = xk-1 + K1k
Resk

K1k
 = 1

k

2 State Resk = xk
* - xk-1 - xk-1Ts

xk = xk-1 + xk-1Ts + K1k
Resk 

xk = xk-1 + K2k
Resk

K1k
 = 

2(2k-1)

k(k+1)

K2k
 = 6

k(k+1)Ts

3 State
Resk = xk

* - xk-1 - xk-1Ts - .5xk-1Ts
2

xk = xk-1 + xk-1Ts + .5xk-1Ts
2+ K1k

Resk

xk = xk-1 + xk-1Ts
2+ K2k

Resk 

xk = xk-1 + K3k
Resk

K1k
 = 

3(3k2-3k+2)

k(k+1)(k+2)
  

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2

Note that the above Table tells us directly how to build the filter

k=1,2,3,….
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Recall Formulas For Errors in Estimates of Different
Order Recursive Least Squares Filters

Note that the covariance expressions in the above Table tells us
directly the best the filter can perform

k=1,2,3,….
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Important Matrices for Different Order Linear
Polynomial Kalman Filters

States

1

2

3

Above matrices will be used in the CRLB equation
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One-State Example
From previous slide we see that for a one-state system
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With initial condition
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By induction it becomes apparent that
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Which means that
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Therefore CRLB covariance for one-state system
is identical to formula for one-state
covariance of recursive least squares filter!

Since
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Two-State Example
From “Important Matrices” slide we see that for a two-state system
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Therefore from the formula for CRLB we can say that
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We will use a computer simulation (with a matrix inverse routine)
 to compute the diagonal elements of the covariance matrix of CRLB.
This method will be compared to a Kalman filter with zero process
noise and infinite initial covariance matrix and to the formulas for
the recursive least squares filter
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Listing For CRLB Comparison in 2-State System-1
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 M(2,2),P(2,2),K(2,1),PHI(2,2),H(1,2),R(1,1),PHIT(2,2)
REAL*8 PHIP(2,2),HT(2,1),KH(2,2),IKH(2,2),A(2,2)
REAL*8 MHT(2,1),HMHT(1,1),HMHTR(1,1),HMHTRINV(1,1),IDN(2,2)
REAL*8 PHIINV(2,2),PHITINV(2,2),PHITINVA(2,2),TEMP1(2,2)
REAL*8 PP(2,2)
REAL*8 K1GM,K2GM,K3GM
INTEGER ORDER
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER=2
TS=.5
SIGNOISE=3.
DO 1000 I=1,ORDER
DO 1000 J=1,ORDER

PHI(I,J)=0.
P(I,J)=0.
IDN(I,J)=0.
A(I,J)=0.

 1000 CONTINUE
 IDN(1,1)=1.

IDN(2,2)=1.
P(1,1)=99999999999999.
P(2,2)=99999999999999.
PHI(1,1)=1
PHI(1,2)=TS
PHI(2,2)=1
DO 1100 I=1,ORDER

H(1,I)=0.
 1100 CONTINUE

H(1,1)=1
CALL MATTRN(H,1,ORDER,HT)
R(1,1)=SIGNOISE**2
CALL MATTRN(PHI,ORDER,ORDER,PHIT)
CALL MTINV(PHI,ORDER,PHIINV)
CALL MTINV(PHIT,ORDER,PHITINV)

A, I, P, Φ and H matrices for 2-state system

HT, R, ΦT, Φ-1, (ΦT)-1 matrices

Inputs for comparison



24 - 11Fundamentals of Kalman Filtering:
A Practical Approach

Listing For CRLB Comparison in 2-State System -2
DO 10 XN=1.,100.
CALL MATMUL(PHI,ORDER,ORDER,P,ORDER,ORDER,PHIP)
CALL MATMUL(PHIP,ORDER,ORDER,PHIT,ORDER,ORDER,M)
CALL MATMUL(M,ORDER,ORDER,HT,ORDER,1,MHT)
CALL MATMUL(H,1,ORDER,MHT,ORDER,1,HMHT)
HMHTR(1,1)=HMHT(1,1)+R(1,1)
HMHTRINV(1,1)=1./HMHTR(1,1)
CALL MATMUL(MHT,ORDER,1,HMHTRINV,1,1,K)
CALL MATMUL(K,ORDER,1,H,1,ORDER,KH)
CALL MATSUB(IDN,ORDER,ORDER,KH,IKH)
CALL MATMUL(IKH,ORDER,ORDER,M,ORDER,ORDER,P)
IF(XN<2)THEN

P11GM=9999999999.
P22GM=9999999999.

ELSE
P11GM=2.*(2.*XN-1)*SIGNOISE*SIGNOISE/

     1 (XN*(XN+1.))
P22GM=12.*SIGNOISE*SIGNOISE/(XN*(XN*XN-1.)

     1 *TS*TS)
ENDIF
CALL MATMUL(PHITINV,ORDER,ORDER,A,ORDER,ORDER,PHITINVA)
CALL MATMUL(PHITINVA,ORDER,ORDER,PHIINV,ORDER,ORDER,

     1 TEMP1)
     DO 1001 I=1,ORDER

DO 1001 J=1,ORDER
A(I,J)=TEMP1(I,J)

 1001 CONTINUE
     A(1,1)=TEMP1(1,1)+1./SIGNOISE**2

CALL MTINV(A,ORDER,PP)
WRITE(9,*)XN,P(1,1),P11GM,PP(1,1),P(2,2),P22GM,PP(2,2)

     WRITE(1,*)XN,P(1,1),P11GM,PP(1,1),P(2,2),P22GM,PP(2,2)
 10 CONTINUE
 CLOSE(1)

PAUSE
END

Iterate
3 Methods

Ricatti equations
with zero process
noise for 2-state
system

Recursive
least squares
filter for 2-state
system

CRLB for
2-state system
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All Methods For Finding Best Performance in Two-
State System Agree
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CRLB and Kalman filter with zero process noise and infinite initial
covariance matrix results are equivalent
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Three-State Example
From “Important Matrices” slide we see that for a three-state system
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Therefore from the formula for CRLB we can say that
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We will use a computer simulation (with a matrix inverse routine)
 to compute the diagonal elements of the covariance matrix of CRLB.
This method will be compared to a Kalman filter with zero process
noise and infinite initial covariance matrix and to the formulas for
the recursive least squares filter
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Listing For CRLB Comparison in 3-State System-1
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 M(3,3),P(3,3),K(3,1),PHI(3,3),H(1,3),R(1,1),PHIT(3,3)
REAL*8 PHIP(3,3),HT(3,1),KH(3,3),IKH(3,3),A(3,3)
REAL*8 MHT(3,1),HMHT(1,1),HMHTR(1,1),HMHTRINV(1,1),IDN(3,3)
REAL*8 PHIINV(3,3),PHITINV(3,3),PHITINVA(3,3),TEMP1(3,3)
REAL*8 PP(3,3)
REAL*8 K1GM,K2GM,K3GM
INTEGER ORDER
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER=3
TS=.5
SIGNOISE=3.
DO 1000 I=1,ORDER
DO 1000 J=1,ORDER

PHI(I,J)=0.
P(I,J)=0.
IDN(I,J)=0.
A(I,J)=0.

 1000 CONTINUE
 IDN(1,1)=1.

IDN(2,2)=1.
IDN(3,3)=1.
P(1,1)=99999999999999.
P(2,2)=99999999999999.
P(3,3)=99999999999999.
PHI(1,1)=1
PHI(1,2)=TS
PHI(1,3)=.5*TS*TS
PHI(2,2)=1
PHI(2,3)=TS
PHI(3,3)=1.
DO 1100 I=1,ORDER

H(1,I)=0.
 1100 CONTINUE

H(1,1)=1
CALL MATTRN(H,1,ORDER,HT)
R(1,1)=SIGNOISE**2
CALL MATTRN(PHI,ORDER,ORDER,PHIT)
CALL MTINV(PHI,ORDER,PHIINV)
CALL MTINV(PHIT,ORDER,PHITINV)

A, I, P, Φ and H matrices for 3-state system

HT, R, ΦT, Φ-1, (ΦT)-1 matrices

Inputs for comparison
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Listing For CRLB Comparison in 3-State System-2
DO 10 XN=1.,100.
CALL MATMUL(PHI,ORDER,ORDER,P,ORDER,ORDER,PHIP)
CALL MATMUL(PHIP,ORDER,ORDER,PHIT,ORDER,ORDER,M)
CALL MATMUL(M,ORDER,ORDER,HT,ORDER,1,MHT)
CALL MATMUL(H,1,ORDER,MHT,ORDER,1,HMHT)
HMHTR(1,1)=HMHT(1,1)+R(1,1)
HMHTRINV(1,1)=1./HMHTR(1,1)
CALL MATMUL(MHT,ORDER,1,HMHTRINV,1,1,K)
CALL MATMUL(K,ORDER,1,H,1,ORDER,KH)
CALL MATSUB(IDN,ORDER,ORDER,KH,IKH)
CALL MATMUL(IKH,ORDER,ORDER,M,ORDER,ORDER,P)
IF(XN<3)THEN

P11GM=9999999999.
P22GM=9999999999.
P33GM=9999999999.

ELSE
P11GM=3.*(3.*XN*XN-3.*XN+2.)*SIGNOISE*SIGNOISE/

     1 (XN*(XN+1.)*(XN+2.))
P22GM=12.*(16.*XN*XN-30.*XN+11.)*SIGNOISE*

     1 SIGNOISE/(XN*(XN*XN-1.)*(XN*XN-4.)
     1 *TS*TS)
     P33GM=720.*SIGNOISE*SIGNOISE/(XN*(XN*XN-1.)*
     1 (XN*XN-4.)*TS*TS*TS*TS)

ENDIF
CALL MATMUL(PHITINV,ORDER,ORDER,A,ORDER,ORDER,PHITINVA)
CALL MATMUL(PHITINVA,ORDER,ORDER,PHIINV,ORDER,ORDER,

     1 TEMP1)
     DO 1001 I=1,ORDER

DO 1001 J=1,ORDER
A(I,J)=TEMP1(I,J)

 1001 CONTINUE
     A(1,1)=TEMP1(1,1)+1./SIGNOISE**2

CALL MTINV(A,ORDER,PP)
WRITE(9,*)XN,P(1,1),P11GM,PP(1,1),P(2,2),P22GM,PP(2,2),

     1 P(3,3),P33GM,PP(3,3)
     WRITE(1,*)XN,P(1,1),P11GM,PP(1,1),P(2,2),P22GM,PP(2,2),
     1 P(3,3),P33GM,PP(3,3)
 10 CONTINUE
 CLOSE(1)

PAUSE
END

Iterate
3 Methods

Ricatti equations
with zero process
noise for 3-state
system

Recursive
least squares
filter for 3-state
system

CRLB for
3-state system
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All Methods For Finding Best Performance in Three-
State System Agree-1
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CRLB and Kalman filter with zero process noise and infinite initial
covariance matrix results are equivalent
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All Methods For Finding Best Performance in Three-
State System Agree-2
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Observations

• The Cramer-Rao Lower Bound (CRLB) tells us the best a least
  squares filter can do

- But so can a recursive least squares filter or the Kalman
  filter Ricatti equations with zero process noise and infinite
  initial covariance matrix

• Knowing the best a filter can do does not tell us how to build the 
  filter so that it will work in the real world
• Generally, building a filter with zero process noise is a bad idea
  because the filter stops paying attention to the measurements

- Numerous examples have been presented in the course
  demonstrating how a filter can fall apart with zero
  process noise
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Simple Derivation the CRLB
From Ricatti Equations
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