Cramer-Rao Bound

What is the Cramer-Rao Lower Bound (CRLB) and What Does it Mean?

According to Bar Shalom*

- "The mean square error corresponding to the estimator of a parameter cannot be smaller than a certain quantity related to the likelihood function"
- "If an estimator's variance is equal to the CRLB, then the estimator is called efficient"
Formula for CRLB found in many texts

$$
\begin{aligned}
& E\left(\left[\hat{x}(Z)-x_{0}\right]\left[\hat{x}(Z)-x_{0}\right]^{T}\right) \geq J^{-1} \\
& J=E\left(\left[\nabla_{x} \ln \Lambda(x)\right]\left[\nabla_{x} \ln \Lambda(x)\right]^{T}\right)_{x=x_{0}}
\end{aligned}
$$

What does this mean and how do I program it?
What does Zarchan say about the utility of the CRLB?
"If an estimator's variance is equal to the CRLB, then perhaps the estimator is called not practical"

Cramer-Rao Lower Bound (CRLB) as an Algorithm

It can be shown* in a more understandable way that according to the CRLB the best a least squares filter can do is given by

$$
P_{k}^{-1}=\left(\Phi P_{k-1} \Phi^{T}\right)^{-1}+H^{T} R^{-1} H
$$

Where \mathbf{P} is the covariance matrix, Φ is the fundamental matrix, H is the measurement matrix and R is the measurement noise matrix. P represents the smallest error in the estimate that is possible. The above equation can be improved slightly to make it easier to program. Let

$$
A_{k}=P_{k}^{-1}
$$

Since

$$
\left(\Phi P_{k-1} \Phi^{T}\right)^{-1}=\left(\Phi^{T}\right)^{-1} P_{k-1}^{-1} \Phi^{-1}=\left(\Phi^{T}\right)^{-1} A_{k-1} \Phi^{-1}
$$

Therefore the the CRLB equation can be rewritten as

$$
A_{k}=\left(\Phi^{T}\right)^{-1} A_{k-1} \Phi^{-1}+H^{T} R^{-1} H
$$

The initial condition on the preceding matrix difference equation is

$$
A_{0}=0
$$

How Does the Cramer-Rao Lower Bound (CRLB) Relate to Our Recursive Least Squares Filter?

- We have studied recursive least squares filters and found their gains and formulas predicting their performance.
- We know that a linear polynomial Kalman filter with zero process noise and infinite initial covariance matrix is identical to the recursive least squares filter.
- The recursive least squares filter also represents the best a filter can do.

Does the CRLB formula yield the same answers as can be obtained by examining the covariance matrix of the recursive least squares filter?

Recall Recursive Least Squares Filter Structure and Gains For Different Order Systems

	Filter	Gains
1 State	$\begin{aligned} & \operatorname{Res}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}^{*}-\widehat{\mathrm{x}}_{\mathrm{k}-1} \\ & \widehat{\mathrm{x}}_{\mathrm{k}}=\widehat{\mathrm{x}}_{\mathrm{k}-1}+\mathrm{K}_{1_{k}} \operatorname{Res}_{\mathrm{k}} \end{aligned}$	$\mathrm{K}_{1 \mathrm{k}_{\mathrm{k}}}=\frac{1}{\mathrm{k}}$
2 State	$\begin{aligned} & \operatorname{Res}_{k}=\mathrm{x}_{\mathrm{k}}^{*}-\widehat{\mathrm{x}}_{\mathrm{k}-1}-\widehat{\dot{\mathrm{x}}}_{\mathrm{k}-1} \mathrm{~T}_{\mathrm{s}} \\ & \widehat{\mathrm{x}}_{\mathrm{k}}=\widehat{\mathrm{x}}_{\mathrm{k}-1}+\widehat{\dot{\mathrm{x}}}_{\mathrm{k}-1} \mathrm{~T}_{\mathrm{s}}+\mathrm{K}_{1_{\mathrm{k}}} \operatorname{Res}_{\mathrm{k}} \\ & \widehat{\dot{\mathrm{x}}}_{\mathrm{k}}=\widehat{\dot{x}}_{\mathrm{k}-1}+\mathrm{K}_{2 \mathrm{k}} \operatorname{Res}_{\mathrm{k}} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{1_{\mathrm{k}}}=\frac{2(2 \mathrm{k}-1)}{\mathrm{k}(\mathrm{k}+1)} \\ & \mathrm{K}_{2 \mathrm{k}}=\frac{6}{\mathrm{k}(\mathrm{k}+1) \mathrm{T}_{\mathrm{s}}} \end{aligned}$
3 State		$\begin{aligned} \mathrm{K}_{1_{\mathrm{k}}} & =\frac{3\left(3 \mathrm{k}^{2}-3 \mathrm{k}+2\right)}{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)} \\ \mathrm{K}_{2_{\mathrm{k}}} & =\frac{18(2 \mathrm{k}-1)}{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2) \mathrm{T}_{\mathrm{s}}} \\ \mathrm{~K}_{3_{\mathrm{k}}} & =\frac{60}{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2) \mathrm{T}_{\mathrm{s}}^{2}} \end{aligned}$

$k=1,2,3, \ldots$.

Note that the above Table tells us directly how to build the filter

Recall Formulas For Errors in Estimates of Different Order Recursive Least Squares Filters

	Standard Deviation	Truncation Error
1 State	$\sqrt{\mathrm{P}_{\mathrm{k}}}=\frac{\sigma_{\mathrm{z}}}{\sqrt{\mathrm{k}}}$	$\varepsilon_{k}=\frac{\mathrm{a}_{1} \mathrm{~T}_{s}}{2}(\mathrm{k}-1)$
2 State	$\begin{aligned} & \sqrt{\mathrm{P}_{11_{k}}}=\sigma_{\mathrm{m}} \sqrt{\frac{2(2 \mathrm{k}-1)}{\mathrm{k}(\mathrm{k}+1)}} \\ & \sqrt{\mathrm{P}_{22_{\mathrm{k}}}}=\frac{\sigma_{\mathrm{n}}}{\mathrm{~T}_{s}} \sqrt{\frac{12}{\mathrm{k}\left(\mathrm{k}^{2}-1\right)}} \end{aligned}$	$\begin{gathered} \varepsilon_{\mathrm{k}}=\frac{1}{6} \mathrm{a}_{2} \mathrm{~T}_{3}^{2}(\mathrm{k}-1)(\mathrm{k}-2) \\ \dot{\varepsilon_{\mathrm{k}}}=\mathrm{a}_{2} \mathrm{~T}_{s}(\mathrm{k}-1) \end{gathered}$
3 State	$\begin{aligned} & \sqrt{\mathrm{P}_{11_{\mathbf{k}}}}=\sigma_{\mathbf{n}} \sqrt{\frac{3\left(3 \mathrm{k}^{2}-3 \mathrm{k}+2\right)}{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)}} \\ & \sqrt{\mathrm{P}_{22_{\mathbf{k}}}}=\frac{\sigma_{\mathrm{m}}}{\mathrm{~T}_{s}} \sqrt{\frac{12\left(16 \mathrm{k}^{2}-30 \mathrm{k}+11\right)}{\mathrm{k}\left(\mathrm{k}^{2}-1\right)\left(\mathrm{k}^{2}-4\right)}} \\ & \sqrt{\mathrm{P}_{33_{\mathbf{k}}}}=\frac{\sigma_{\mathrm{m}}}{\mathrm{~T}_{3} 2} \sqrt{\frac{720}{\mathrm{k}\left(\mathrm{k}^{2}-1\right)\left(\mathrm{k}^{2}-4\right)}} \end{aligned}$	$\begin{aligned} & \varepsilon_{\mathrm{k}}=\frac{1}{20} \mathrm{a}_{3} \mathrm{~T}_{3}^{3}(\mathrm{k}-1)(\mathrm{k}-2)(\mathrm{k}-3) \\ & \varepsilon_{\mathrm{k}}=\frac{1}{10} \mathrm{a}_{3} \mathrm{~T}_{3}^{2}\left(6 \mathrm{k}^{2}-15 \mathrm{k}+11\right) \end{aligned}$ $\ddot{\varepsilon}_{\mathrm{k}}=3 \mathrm{a}_{3} \mathrm{~T}_{s}(\mathrm{k}-1)$

Note that the covariance expressions in the above Table tells us directly the best the filter can perform

Important Matrices for Different Order Linear Polynomial Kalman Filters

States	Order	Systmes Dynamics	Fundamental	Measurement	Noise
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{F}=1$	$\boldsymbol{\Phi}_{\mathbf{k}}=1$	$\mathbf{H}=1$	$\mathbf{R}_{\mathbf{k}}=\sigma_{\mathbf{n}}^{2}$
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{F}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$	$\boldsymbol{\Phi}_{\mathbf{k}}=\left[\begin{array}{cc}1 & \mathbf{T}_{\mathbf{s}} \\ 0 & 1\end{array}\right]$	$\mathbf{H}=\left[\begin{array}{ll}1 & 0\end{array}\right]$	$\mathbf{R}_{\mathbf{k}}=\boldsymbol{\sigma}_{\mathbf{n}}^{2}$
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{F}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right.$			

Above matrices will be used in the CRLB equation

One-State Example

From previous slide we see that for a one-state system

$$
\Phi=1, R=\sigma^{2} \text { and } H=1
$$

Therefore from the formula for the CRLB we can say that

$$
A_{k}=\left(\Phi^{T}\right)^{-1} A_{k-1} \Phi^{-1}+H^{T} R^{-1} H=A_{k-1}+\frac{1}{\sigma^{2}}
$$

With initial condition

$$
A_{0}=0
$$

Therefore by inspection we can see that

$$
\begin{aligned}
& A_{1}=A_{0}+\frac{1}{\sigma^{2}}=0+\frac{1}{\sigma^{2}}=\frac{1}{\sigma^{2}} \\
& A_{2}=A_{1}+\frac{1}{\sigma^{2}}=\frac{1}{\sigma^{2}}+\frac{1}{\sigma^{2}}=\frac{2}{\sigma^{2}} \\
& A_{3}=A_{2}+\frac{1}{\sigma^{2}}=\frac{2}{\sigma^{2}}+\frac{1}{\sigma^{2}}=\frac{3}{\sigma^{2}}
\end{aligned}
$$

By induction it becomes apparent that

$$
A_{k}=\frac{k}{\sigma^{2}}
$$

Which means that

$$
P_{k}=\frac{\sigma^{2}}{k}
$$

Therefore CRLB covariance for one-state system is identical to formula for one-state covariance of recursive least squares filter!

Since ${ }_{P_{k}=A_{k}^{-1}}$

Two-State Example

From "Important Matrices" slide we see that for a two-state system

$$
\Phi=\left[\begin{array}{cc}
1 & T_{s} \\
0 & 1
\end{array}\right] \quad R=\sigma^{2} \quad H=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

Therefore from the formula for CRLB we can say that

$$
A_{k}=\left(\Phi^{T}\right)^{-1} A_{k-1} \Phi^{-1}+H^{T} R^{-1} H
$$

With initial condition

$$
\begin{aligned}
& A_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \text { and } \\
& P_{k}=A_{k}^{-1}
\end{aligned}
$$

We will use a computer simulation (with a matrix inverse routine) to compute the diagonal elements of the covariance matrix of CRLB. This method will be compared to a Kalman filter with zero process noise and infinite initial covariance matrix and to the formulas for the recursive least squares filter

Listing For CRLB Comparison in 2-State System-1

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 M(2,2),P(2,2),K(2,1),PHI(2,2),H(1,2),R(1,1),PHIT(2,2)
REAL*8 PHIP $(2,2), \mathrm{HT}(2,1), \mathrm{KH}(2,2), \mathrm{IKH}(2,2), \mathrm{A}(2,2)$
REAL*8 MHT(2,1),HMHT(1,1),HMHTR(1,1),HMHTRINV(1,1),IDN(2,2)
REAL*8 PHIINV(2,2),PHITINV(2,2),PHITINVA(2,2),TEMP1 $(2,2)$
REAL*8 PP(2,2)
REAL*8 K1GM,K2GM,K3GM
INTEGER ORDER
OPEN (1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER=2
TS=. 5
SIGNOISE=3. \qquad Inputs for comparison
DO 1000 I=1,ORDER
DO $1000 \mathrm{~J}=1, \mathrm{ORDER}$
$\operatorname{PHI}(\mathrm{I}, \mathrm{J})=0$. $P(I, J)=0$. $\operatorname{IDN}(\mathrm{I}, \mathrm{J})=0$. $\mathrm{A}(\mathrm{I}, \mathrm{J})=0$.
CONTINUE
$\operatorname{IDN}(1,1)=1$.
IDN(2,2)=1
$\mathrm{P}(1,1)=99999999999999$.
$\mathrm{P}(2,2)=99999999999999$.
PHI(1,1)=1
PHI(1,2)=TS
$\operatorname{PHI}(2,2)=1$
DO 1100 I=1,ORDER
$\mathrm{H}(1, \mathrm{I})=0$.
CONTINUE
$\mathrm{H}(1,1)=1$
CALL MATTRN(H,1,ORDER,HT)
R $(1,1)=$ SIGNOISE**2
CALL MATTRN(PHI,ORDER,ORDER,PHIT)
CALL MTINV(PHI,ORDER,PHIINV)
CALL MTINV(PHIT,ORDER,PHITINV)

A, I, P, Φ and H matrices for 2-state system

$\square \mathbf{H}^{\top}, \mathbf{R}, \Phi^{\top}, \Phi^{-1},\left(\Phi^{\top}\right)^{-1}$ matrices

Listing For CRLB Comparison in 2-State System -2

Three-State Example

From "Important Matrices" slide we see that for a three-state system

$$
\Phi=\left[\begin{array}{ccc}
1 & T_{s} & 0.5 T_{s}^{2} \\
0 & 1 & T_{s} \\
0 & 0 & 1
\end{array}\right] R=\sigma^{2} \quad H=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

Therefore from the formula for CRLB we can say that

$$
A_{k}=\left(\Phi^{T}\right)^{-1} A_{k-1} \Phi^{-1}+H^{T} R^{-1} H
$$

With initial condition

$$
\begin{aligned}
& A_{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \text { and } \begin{aligned}
P_{k} & =A_{k}^{-1}
\end{aligned}, ~
\end{aligned}
$$

We will use a computer simulation (with a matrix inverse routine) to compute the diagonal elements of the covariance matrix of CRLB. This method will be compared to a Kalman filter with zero process noise and infinite initial covariance matrix and to the formulas for the recursive least squares filter

Listing For CRLB Comparison in 3-State System-2

All Methods For Finding Best Performance in ThreeState System Agree-1

CRLB and Kalman filter with zero process noise and infinite initial covariance matrix results are equivalent

All Methods For Finding Best Performance in ThreeState System Agree-2

Observations

- The Cramer-Rao Lower Bound (CRLB) tells us the best a least squares filter can do
- But so can a recursive least squares filter or the Kalman filter Ricatti equations with zero process noise and infinite initial covariance matrix
- Knowing the best a filter can do does not tell us how to build the filter so that it will work in the real world
- Generally, building a filter with zero process noise is a bad idea because the filter stops paying attention to the measurements
- Numerous examples have been presented in the course demonstrating how a filter can fall apart with zero process noise

Simple Derivation the CRLB

From Ricatti Equations

$$
\begin{aligned}
& P=(I-K H) M \\
& K=M H^{T}\left(H M H^{T}+R\right)^{-1}
\end{aligned}
$$

Therefore Substitution Yields

$$
P=\left[I-M H^{T}\left(H M H^{T}+R\right)^{-1} H\right] M=M-M H^{T}\left(H M H^{T}+R\right)^{-1} H M
$$

We Want to Prove That

$$
P^{-1}=M^{-1}+H^{T} R^{-1} H \text { or } P^{-1}=M^{-1}+H^{T} R^{-1} H=\left(\Phi P \Phi^{T}+Q\right)^{-1}+H^{T} R^{-1} H=\left(\Phi P \Phi^{T}\right)^{-1}+H^{T} R^{-1} H \text { if } \mathbf{Q}=\mathbf{0}
$$

For Preceding Equation to be True

$$
I=P P^{-1}
$$

$$
I=\left[M-M H^{T}\left(H M H^{T}+R\right)^{-1} H M\right]\left[M^{-1}+H^{T} R^{-1} H\right]
$$

Multiplying Terms Out and Combining

```
        I=I+MHT}[\mp@subsup{R}{}{-1}-(HM\mp@subsup{H}{}{T}+R\mp@subsup{)}{}{-1}(I+HM\mp@subsup{H}{}{T}\mp@subsup{R}{}{-1})]
```

But

$$
\left(I+H M H^{T} R^{-1}\right)=\left(R+H M H^{T}\right) R^{-1}
$$

Therefore

$$
I=I+M H^{T}\left[R^{-1}-\left(H M H^{T}+R\right)^{-1}\left(R+H M H^{T}\right) R^{-1}\right] H=I+M H^{T}\left[R^{-1}-I R^{-1}\right] H=I+0=I
$$

