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Recursive Least Squares Filtering
Overview

•   Making zeroth-order least squares filter recursive
•   Deriving properties of recursive zeroth-order filter
•   First and second-order recursive least squares filters

-   Structure and gains
-   Errors in estimates due to measurement noise and 
truncation error

•   Comparison of various order recursive least squares filters
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Review

•   Method of least squares is a batch processing technique
-   All measurements must be taken before estimates can be
made

•   Matrix inverse required
-   Dimensions of matrix inverse proportional to order of 
polynomial fit (i.e. First-order fit requires two by two inverse)
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Zeroth-Order Recursive Least Squares Filter
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Making Zeroth-Order Filter Recursive - 1

Batch processing least squares filter formula

xk = a0 = 

xi
*!

i=1

k

k

Rewrite by changing subscripts

xk+1 = 

xi
*!

i=1

k+1

k+1

Expanding the numerator yields

xk+1 = 

xi
* + xk+1

*!
i=1

k

k+1

Since

xi
*!

i=1

k

 = kxk

By substitution we can say that
xk+1 = 

kxk + x
k+1
*

k+1
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Making Zeroth-Order Filter Recursive - 2

Can add and subtract the previous state estimate to the numerator 
xk+1 = 

kxk + xk + xk+1
*  - xk

k+1
 = 

(k+1)xk + xk+1
*  - xk

k+1

Rewrite the preceding equation as

xk+1  = xk + 1
k+1

 (xk+1
*  - xk)

Changing subscripts yields

xk  = xk-1 + 1
k

 (xk
* - xk-1)

*This is recursive form we desire since the new estimate simply depends 
on the old estimate plus a gain (i.e., 1/k for the zeroth-order filter)
times a residual (i.e., current measurement minus previous estimate)
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Properties of the Zeroth-Order Recursive Filter
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Another Form of the Zeroth-Order Recursive Filter

Recursive form of zeroth-order filter

xk = xk-1 + K1k
Resk

Where filter gain is
K1k

 = 1
k

   k=1,2,...,n

And residual is given by
Resk = xk

* - xk-1  
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Numerical Example For the Zeroth-Order Filter-1
Previous measurement data

0     1     2     3

1.2 .2 2.9 2.1

k

(k-1)T
s

x
k

*

1 2 3 4

Gain for first measurement

K11
 = 1

k
 = 1

1
  = 1 

For lack of any a priori information assume
x0 = 0

Calculate residual as
Res1 = x1

* - x0 = 1.2 - 0 = 1.2

New estimate becomes
x1 = x0 + K11

Res1 = 0 + 1*1.2 = 1.2

*We are able to make estimates
before all the data is collected
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Numerical Example For the Zeroth-Order Filter-2
For next cycle with k=2

K12
 = 1

k
 = 1

2
  = .5 

Res2 = x2
* - x1 = .2 - 1.2 = -1

x2 = x1 + K12
Res2 = 1.2 + .5*(-1) = .7

Another estimate without
collecting all the data

For next cycle with k=3
K13

 = 1

k
 = 1

3
  = .333 

Res3 = x3
* - x2 = 2.9 - .7 = 2.2

x3 = x2 + K13
Res3 = .7 + .333*2.2 = 1.43 Another estimate

For last cycle with k=4
K14

 = 1

k
 = 1

4
  = .25 

Res4 = x4
* - x3 = 2.1 - 1.43 = .67

x4 = x3 + K14
Res4 = 1.43 + .25*.67 = 1.6

Same answer obtained from
batch processing method
when all the data was collected
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Batch Processing and Recursive Least Squares
Methods Yield the Same Answers After All

Measurements Are Taken
4

3

2

1

0

3.02.52.01.51.00.50.0

Time (Sec)

Measurement

Batch Processing
Recursive

Both Agree
Here

Zeroth-Order
Least Squares Filters
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Initial Conditions For Recursive Least Squares
Filter Are Not Important

Assume a different initial condition
x0 = 100

Start first cycle of recursive equations with k=1

Res1 = x1
* - x0 = 1.2 - 100 = -98.8

x1 = x0 + K11
Res1 = 100 + 1*(-98.8) = 1.2

K11
 = 1

k
 = 1

1
  = 1 

This is same answer as when
the initial condition was zero
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Deriving a Formula For Variance in Filter’s Estimate - 1

Recursive filter form is given by

xk  = xk-1 + 1
k

 (xk
* - xk-1)

The error in the estimate is
xk - xk  = xk - xk-1  - 1

k
 (xk

* - xk-1) Signal minus estimate and not
measurement minus estimate

Measurement is simply the signal plus noise
 xk

* = xk + vk

Substitution yields
xk - xk  = xk - xk-1  - 1

k
 (xk + vk - xk-1)

Since signal is constant for zeroth-order system

xk = xk-1
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Deriving a Formula For Variance in Filter’s Estimate - 2

Substitution yields
xk - xk  = (xk-1 - xk-1) (1 - 1

k
) - 1

k
 vk

Square both sides of the preceding equation

(xk - xk)2  = (xk-1 - xk-1)2 (1 - 1
k

)
2
 - 2(1 - 1

k
)(xk-1 - xk-1)

vk

k
 + (1

k
 vk)

2

Take expectations of both sides of the equation
E[(xk - xk)2]  = E[(xk-1 - xk-1)2] (1 - 1

k
)
2
 - 2(1 - 1

k
)E[(xk-1 - xk-1)vk]1

k
 + E[(1

k
 vk)

2
]

If we define
E[(xk - xk)2]  = Pk

E[vk
2] = !n

2
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Deriving a Formula For Variance in Filter’s Estimate - 3

And assume that the noise is not correlated with the error in the estimate
E[(xk-1 - xk-1)vk] = 0

We get

Pk = Pk-1(1 - 1
k

)
2
 + 

!n
2

k2

Using engineering induction to solve preceding difference equation

P1 = P0(1 - 1
1

)
2
 + 

!n
2

12
 = !n

2

P2 = P1(1 - 1
2

)
2
 + 

!n
2

22
 = !n

2 1
4

 + 
!n

2

4
 = 

!n
2

2

P3 = P2(1 - 1
3

)
2
 + 

!n
2

32
 = 

!n
2

2
 4
9

 + 
!n

2

9
 = 

!n
2

3

P4 = P3(1 - 1
4

)
2
 + 

!n
2

42
  = 

!n
2

3
 9
16

 + 
!n

2

16
 = 

!n
2

4
 

Trend indicates that
Pk = 

!n
2

k

Formula for variance of error
In the estimate
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Deriving a Formula For Filter Truncation Error - 1

Suppose signal is one degree higher than filter
xk = a0 + a1t = a0 + a1(k-1)Ts

Error in the estimate
!k = xk - xk

Recall batch processing formula for zeroth-order filter

xk = 

xi
*!

i=1

k

k

In the noise free case we obtain

xk = 

xi!
i=1

k

k
 = 

[a0 + a1(i-1)Ts]!
i=1

k

k
 = 

a0!
i=1

k

+ a1Ts i - a1Ts!
i=1

k

 !
i=1

k

k

Since math handbooks tell us that
!
i=1

k

= k

i = 
k(k+1)

2
!
i=1

k
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Deriving a Formula For Filter Truncation Error - 2
Substitution yields

xk = 
a0k+ a1Ts

k(k+1)

2
 - a1Tsk

k
 = a0 + 

a1Ts

2
(k-1)

Therefore error in the estimate given by

!k = xk - xk = a0 + a1Ts(k-1) - a0 - 
a1Ts

2
(k-1) = 

a1Ts

2
(k-1)

Truncation error
formula
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FORTRAN Simulation For Testing Zeroth-Order Filter

GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
TS=.1
SIGNOISE=1.
A0=1.
A1=0.
XH=0.
XN=0.
DO 10 T=0.,10.,TS
XN=XN+1.
CALL GAUSS(XNOISE,SIGNOISE)
ACT=A0+A1*T
XS=ACT+XNOISE
XK=1./XN
RES=XS-XH
XH=XH+XK*RES
SP11=SIGNOISE/SQRT(XN)
XHERR=ACT-XH
EPS=.5*A1*TS*(XN-1)
WRITE(9,*)T,ACT,XS,XH,XHERR,SP11,-SP11,EPS
WRITE(1,*)T,ACT,XS,XH,XHERR,SP11,-SP11,EPS

 10 CONTINUE
 CLOSE(1)

PAUSE
END

Standard deviation of noise
Polynomial coefficients of signal

Signal

Measurement
Recursive filter

Actual error in estimate
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Zeroth-Order Recursive Least Squares Filter is
Able to Track Zero-Order Polynomial Plus Noise

Measurement
x* = 1 + noise

!noise = 1

4

3

2

1

0

-1

-2

1086420

Time (Sec)

True Signal

Measurement

Estimate

Zeroth-Order Filter
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Single Run Simulation Results Agree With
Theoretical Formula

Measurement
x* = 1 + noise

!noise = 1

Pk = 
!n

k

Theory

-1.0

-0.5

0.0

0.5

1.0

1086420

Time (Sec)

Simulation Theory

Theory

Zeroth-Order Filter
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Zeroth-Order Recursive Least Squares Filter is
Unable to Track First-Order Polynomial

Measurement
x* = 1 +2t

20

15

10

5

0

1086420

Time (Sec)

Zeroth-Order Filter
First-Order Signal

True Signal

Estimate
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Simulation Results and Truncation Error Formula
are in Excellent Agreement

Theory
!k = 

a1Ts

2
(k-1) = .5*2*.1(k-1) = .1(k-1) 

10

8

6

4

2

0

1086420

Time (Sec)

Theory and Simulation

Zeroth-Order Filter
First-Order Signal
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Summary of Results So Far For Zeroth-Order
Recursive Least Squares Filter

Formulas for errors in estimates due to noise and truncation error

P11k
 = 

!n

k

!k = .5a1Ts(k-1)

As more measurements are taken
- Less error in estimate due to measurement noise
- More error in estimate due to truncation error
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FORTRAN Monte Carlo Simulation for Testing
Zeroth-Order Recursive Least Squares Filter

GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL1')
OPEN(2,STATUS='UNKNOWN',FILE='DATFIL2')
OPEN(3,STATUS='UNKNOWN',FILE='DATFIL3')
OPEN(4,STATUS='UNKNOWN',FILE='DATFIL4')
OPEN(5,STATUS='UNKNOWN',FILE='DATFIL5')
DO 11 K=1,5
TS=.1
SIGNOISE=1.
A0=1.
A1=0.
XH=0.
XN=0.
DO 10 T=0.,10.,TS
XN=XN+1.
CALL GAUSS(XNOISE,SIGNOISE)
ACT=A0+A1*T
XS=ACT+XNOISE
XK=1./XN
RES=XS-XH
XH=XH+XK*RES
SP11=SIGNOISE/SQRT(XN)
XHERR=ACT-XH
EPS=.5*A1*TS*(XN-1)
WRITE(9,*)T,XHERR,SP11,-SP11
WRITE(K,*)T,XHERR,SP11,-SP11

 10 CONTINUE
 CLOSE(K)
 11 CONTINUE

PAUSE
END

Loop for making 5 runs
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Monte Carlo Results Lie Within the Theoretical
Bounds Approximately 68% of the Time

Pk = 
!n

k

Theory

-1.0

-0.5

0.0

0.5

1.0

1086420

Time (Sec)

Zeroth-Order Filter
5 Runs

Theory

Theory
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First-Order Recursive Least Squares Filter
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First-Order Recursive Filter Structure

Filter
Resk = xk

* - xk-1 - xk-1Ts

xk = xk-1 + xk-1Ts + K1k
Resk 

xk = xk-1 + K2k
Resk

Gains
K1k

 = 
2(2k-1)

k(k+1)
   k=1,2,...,n

K2k
 = 6

k(k+1)Ts

Using techniques similar to those of the previous section, we can convert
the batch processing first-order least squares filter to a recursive form.
After much algebraic manipulation we obtain
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Numerical Example For First-Order Filter-1
Recall from previous section measurement data given by

x1
* = 1.2

x2
* = .2

x3
* = 2.9

x4
* = 2.1

Ts = 1

First iteration (k=1)
K11

 = 
2(2k-1)

k(k+1)
 = 

2(2*1-1)

1(1+1)
 = 1

K21
 = 6

k(k+1)Ts

 = 6
1(1+1)*1

 = 3

Res1 = x1
* - x0 - x0Ts = 1.2 - 0 - 0*1 = 1.2

x1 = x0 + x0Ts + K11
Res1 = 0 + 0*1 +1*1.2 = 1.2

x1 = x0 + K21
Res1 = 0 + 3*1.2 = 3.6

x0 = 0

x0 = 0

Assume
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Numerical Example For First-Order Filter-2

Second iteration (k=2)
K12

 = 
2(2k-1)

k(k+1)
 = 

2(2*2-1)

2(2+1)
 = 1

K22
 = 6

k(k+1)Ts

 = 6
2(2+1)*1

 = 1

Res2 = x2
* - x1 - x1Ts = .2 - 1.2 - 3.6*1 = -4.6

x2 = x1 + x1Ts + K12
Res2 = 1.2 + 3.6*1 +1*(-4.6) = .2

x2 = x1 + K22
Res2 = 3.6 + 1*(-4.6) = -1

Third iteration (k=3)
K13

 = 
2(2k-1)

k(k+1)
 = 

2(2*3-1)

3(3+1)
 = 5

6

K23
 = 6

k(k+1)Ts

 = 6
3(3+1)*1

 = .5

Res3 = x3
* - x2 - x2Ts = 2.9 - .2 - (-1)*1 = 3.7

x3 = x2 + x2Ts + K13
Res3 = .2 + (-1)*1 + 5

6
*3.7 = 2.28

x3 = x2 + K23
Res3 = -1 + .5*3.7 = .85
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Numerical Example For First-Order Filter-3

Last iteration (k=4)
K14

 = 
2(2k-1)

k(k+1)
 = 

2(2*4-1)

4(4+1)
 = .7

K24
 = 6

k(k+1)Ts

 = 6
4(4+1)*1

 = .3

Res4 = x4
* - x3 - x3Ts = 2.1 - 2.28 - .85*1 = -1.03

x4 = x3 + x3Ts + K14
Res4 = 2.28 + .85*1 +.7*(-1.03) = 2.41 Same answer as obtained

with first-order batch
processing filterx4 = x3 + K24

Res4 = .85 + .3*(-1.03) = .54
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First-Order Recursive and Batch Processing Least
Squares Filters Yield the Same Answers After All

Measurements are Taken

4

3

2

1

0

3.02.52.01.51.00.50.0

Time (Sec)

Measurement

Batch Processing

Recursive

Both Agree
Here

First-Order
Least Squares Filters
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Important Performance Formulas For First-Order
Filter

Variance of error in estimate due to measurement noise
P11k

 = 
2(2k-1)!n

2

k(k+1)

P22k
 = 

12!n
2

k(k2-1)Ts
2

Error in estimate due to truncation error

xk
* = a0 + a1t + a2t2 = a0 + a1(k-1)Ts  + a2(k-1)2Ts

2 Given second-order signal

!k = 1
6

a
2

Ts
2(k-1)(k-2)

!k = a2Ts(k-1)

The following formulas are stated but are not derived
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FORTRAN Simulation For Testing First-Order
Recursive Least Squares Filter

GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
TS=.1
SIGNOISE=5.
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
OPEN(2,STATUS='UNKNOWN',FILE='COVFIL')
A0=3.
A1=1.
A2=0.
XH=0.
XDH=0.
XN=0
DO 10 T=0.,10.,TS
XN=XN+1.
CALL GAUSS(XNOISE,SIGNOISE)
X=A0+A1*T+A2*T*T
XD=A1+2*A2*T
XS=X+XNOISE
XK1=2*(2*XN-1)/(XN*(XN+1))
XK2=6/(XN*(XN+1)*TS)
RES=XS-XH-TS*XDH
XH=XH+XDH*TS+XK1*RES
XDH=XDH+XK2*RES
IF(XN.EQ.1)THEN

LET SP11=0
LET SP22=0

ELSE
SP11=SIGNOISE*SQRT(2.*(2*XN-1)/(XN*(XN+1)))
SP22=SIGNOISE*SQRT(12/(XN*(XN*XN-1)*TS*TS))

ENDIF
XHERR=X-XH
XDHERR=XD-XDH
EPS=A2*TS*TS*(XN-1)*(XN-2)/6
EPSD=A2*TS*(XN-1)
WRITE(9,*)T,X,XS,XH,XD,XDH
WRITE(1,*)T,X,XS,XH,XD,XDH
WRITE(2,*)T,XHERR,SP11,-SP11,EPS,XDHERR,SP22,-SP22,EPSD

 10 CONTINUE
 CLOSE(1)
 CLOSE(2)

PAUSE
END

Standard deviation of noise

Polynomial coefficients of signal

Signal and derivative
Measurement

Recursive filter

Actual errors in estimate
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First-Order Recursive Least Squares Filter is Able
to Track First-Order Signal Plus Noise

Measurement
x* = 3 + t + noise

!noise = 5

25

20

15

10

5

0

-5

1086420

Time (Sec)

True Signal

Measurement

Estimate
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First-Order Recursive Least Squares Filter is Able
to Estimate Derivative of Signal

Measurement
x* = 3 + t + noise

!noise = 5

30

20

10

0

1086420

Time (Sec)

True Derivative

Estimate
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Single Run Simulation Results For First State
Agree With Theoretical Formula

Theory

P11k
 = 

2(2k-1)!n
2

k(k+1)

Measurement
x* = 3 + t + noise

!noise = 5

-4

-2

0

2

4

1086420

Time (Sec)

Simulation

Theory

Theory

First-Order Recursive
Least Squares Filter
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Single Run Simulation Results For Second State
Also Agrees With Theoretical Formula

Measurement
x* = 3 + t + noise

!noise = 5

Theory
P22k

 =  
12!n

2

k(k2-1)Ts
2

-10

-5

0

5

10

1086420

Time (Sec)

First-Order Recursive
Least Squares FilterSimulation

Theory

Theory
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Simulated Error in the Estimates of First State
Appear to Lie Within Theoretical Error Bounds 68%

of the Time

Theory

P11k
 = 

2(2k-1)!n
2

k(k+1)

-10

-5

0

5

1086420

Time (Sec)

First-Order Filter
5 Runs

Theory

Theory
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Simulated Error in the Estimates of Second State
Appear to Lie Within Theoretical Error Bounds 68%

of the Time

Theory
P22k

 =  
12!n

2

k(k2-1)Ts
2

-10

-5

0

5

10

1086420

Time (Sec)

First-Order Filter
5 Runs

Theory

Theory
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First-Order Recursive Least Squares Filter is
Unable to Track the First State of a Second-Order

Polynomial

Measurement
x* = 1 + 2t + 3t2

300

250

200

150

100

50

0

1086420

Time (Sec)

True Signal

Estimate

First-Order Filter
Second-Order Signal
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First-Order Recursive Least Squares Filter is
Unable to Track the Second State of a Second-

Order Polynomial

Measurement
x* = 1 + 2t + 3t2

60

50

40

30

20

10

0

1086420

Time (Sec)

First-Order Filter
Second-Order Signal

Truth

Estimate
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Simulation Results and Truncation Error for First
State are in Excellent Agreement

Theory

!k = 1
6

a
2

Ts
2(k-1)(k-2)

Measurement
x* = 1 + 2t + 3t2

50

40

30

20

10

0

1086420

Time (Sec)

First-Order Filter
Second-Order Signal

Theory & Simulation
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Simulation Results and Truncation Error for
Second State are in Excellent Agreement

Measurement
x* = 1 + 2t + 3t2

Theory
!k = a2Ts(k-1)

30

25

20

15

10

5

0

1086420

Time (Sec)

First-Order Filter
Second-Order Signal

Theory & Simulation
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Second-Order Recursive Least Squares Filter
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Second-Order Recursive Filter Structure

Filter

Gains

Using techniques similar to those of the first section, we can convert
the batch processing second-order least squares filter to a recursive form.
After much algebraic manipulation we obtain

K1k
 = 

3(3k2-3k+2)

k(k+1)(k+2)
   k=1,2,...,n

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2

Resk = xk
* - xk-1 - xk-1Ts - .5xk-1Ts

2

xk = xk-1 + xk-1Ts + .5xk-1Ts
2+ K1k

Resk

xk = xk-1 + xk-1Ts
2+ K2k

Resk 

xk = xk-1 + K3k
Resk
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Numerical Example For Second-Order Filter-1
Recall from previous Lecture measurement data given by

x1
* = 1.2

x2
* = .2

x3
* = 2.9

x4
* = 2.1

Ts = 1

First iteration (k=1)
K11

 = 
3(3k2-3k+2)

k(k+1)(k+2)
  = 

3(3*1-3*1+2)

1(2)(3)
 = 1

K21
 = 

18(2k-1)

k(k+1)(k+2)Ts

 = 
18(2-1)

1(2)(3)(1)
 = 3

K31
 = 60

k(k+1)(k+2)Ts
2
 = 60

1(2)(3)(1)
 = 10

Assume
x0 = 0

x0 = 0

x0 = 0

Res1 = x1
* - x0 - x0Ts - .5x0Ts

2 = 1.2 - 0 - 0 - 0 = 1.2

x1 = x0 + x0Ts + .5x0Ts
2+ K11

Res1 = 0 + 0 + 0 +1*1.2 = 1.2

x1 = x0 + K31
Res1 = 0 + 10*1.2 = 12 

x1 = x0 + x0Ts+ K21
Res1 = 0 + 0 + 3*1.2 = 3.6
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Numerical Example For Second-Order Filter-2

Second iteration (k=2)

K12
 = 

3(3k2-3k+2)

k(k+1)(k+2)
  = 

3(3*4-3*2+2)

2(3)(4)
 = 1

K22
 = 

18(2k-1)

k(k+1)(k+2)Ts

 = 
18(2*2-1)

2(3)(4)(1)
 = 2.25

K32
 = 60

k(k+1)(k+2)Ts
2

 = 60
2(3)(4)(1)

 = 2.5

Res2 = x2
* - x1 - x1Ts - .5x1Ts

2 = .2 - 1.2 - 3.6 - .5*12 = -10.6

x2 = x1 + x1Ts + .5x1Ts
2+ K12

Res2 = 1.2 + 3.6 + .5*12 +1*(-10.6) = .2

x2 = x1 + K32
Res2 = 12 + 2.5*(-10.6) = -14.5

x2 = x1 + x1Ts+ K22
Res2 = 3.6 + 12 + 2.25*(-10.6) = -8.25
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Numerical Example For Second-Order Filter-3

Third iteration (k=3)

K13
 = 

3(3k2-3k+2)

k(k+1)(k+2)
  = 

3(3*9-3*3+2)

3(4)(5)
 = 1

K23
 = 

18(2k-1)

k(k+1)(k+2)Ts

 = 
18(2*3-1)

3(4)(5)(1)
 = 1.5

K33
 = 60

k(k+1)(k+2)Ts
2

 = 60
3(4)(5)(1)

 = 1 

Res3 = x3
* - x2 - x2Ts - .5x2Ts

2 = 2.9 - .2 - (-8.25) - .5*(-14.5) = 18.2

x3 = x2 + x2Ts + .5x2Ts
2+ K13

Res3 = .2 - 8.25 + .5*(-14.5) +1*18.2 = 2.9

x3 = x2 + K33
Res3 = -14.5 + 1*18.2 = 3.7

x3 = x2 + x2Ts+ K23
Res3 = -8.25 - 14.5 + 1.5*18.2 = 4.55
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Numerical Example For Second-Order Filter-4

Last iteration (k=4)
K14

 = 
3(3k2-3k+2)

k(k+1)(k+2)
  = 

3(3*16-3*4+2)

4(5)(6)
 = 19

20

K24
 = 

18(2k-1)

k(k+1)(k+2)Ts

 = 
18(2*4-1)

4(5)(6)(1)
 = 21

20

K34
 = 60

k(k+1)(k+2)Ts
2

 = 60
4(5)(6)(1)

 = .5

Res4 = x4
* - x3 - x3Ts - .5x3Ts

2 = 2.1 - 2.9 - 4.55 - .5*3.7 = -7.2

x4 = x3 + x3Ts + .5x3Ts
2+ K14

Res4 = 2.9 + 4.55 + .5*3.7 +19
20

*(-7.2) = 2.46

x4 = x3 + K34
Res4 = 3.7 + .5*(-7.2) = .1

Same answer as obtained
with second-order batch
processing filter

x4 = x3 + x3Ts+ K24
Res4 = 4.55 + 3.7*1 + 21

20
*(-7.2) = .69
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Recursive and Batch Processing Second-Order
Least Squares Filters Yield the Same Answers After

all the Measurements are Taken

4

3

2

1

0

3.02.52.01.51.00.50.0

Time (Sec)

Second-Order
Least Squares Filters

Measurement

Batch Processing

Recursive
Both Agree

Here
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Important Performance Formulas For Second-Order
Filter

Variance of error in estimate due to measurement noise

Error in estimate due to truncation error

Given third-order signal

P11k
 = 

3(3k2-3k+2)!n
2

k(k+1)(k+2)

P22k
 = 

12(16k2-30k+11)!n
2

k(k2-1)(k2-4)Ts
2

P33k
 = 

720!n
2

k(k2-1)(k2-4)Ts
4

xk
* = a0 + a1t + a2t2+ a3t3 = a0 + a1(k-1)Ts  + a2(k-1)2Ts

2+ a3(k-1)3Ts
3

!k = 1
20

a
3

Ts
3(k-1)(k-2)(k-3)

!k = 1
10

a
3

Ts
2(6k2-15k+11)

!k = 3a3Ts(k-1)

The following formulas are stated but are not derived
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FORTRAN Simulation for Testing Second-Order
Recursive Least Squares Filter - 1

GLOBAL DEFINE
       INCLUDE 'quickdraw.inc'
      END

IMPLICIT REAL*8(A-H,O-Z)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
OPEN(2,STATUS='UNKNOWN',FILE='COVFIL')
TS=.1
SIGNOISE=50.
A0=2.
A1=-2.
A2=5.
A3=0.
XH=0.
XDH=0.
XDDH=0.
XN=0.
DO 10 T=0,10.,TS
XN=XN+1.
CALL GAUSS(XNOISE,SIGNOISE)
X=A0+A1*T+A2*T*T+A3*T*T*T
XD=A1+2*A2*T+3.*A3*T*T
XDD=2*A2+6*A3*T
XS=X+XNOISE
XK1=3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*(XN+2))
XK2=18*(2*XN-1)/(XN*(XN+1)*(XN+2)*TS)
XK3=60/(XN*(XN+1)*(XN+2)*TS*TS)
RES=XS-XH-TS*XDH-.5*TS*TS*XDDH
XH=XH+XDH*TS+.5*XDDH*TS*TS+XK1*RES
XDH=XDH+XDDH*TS+XK2*RES
XDDH=XDDH+XK3*RES

Standard deviation of noise
Polynomial coefficients of signal

Signal and it’s derivatives
Measurement

Recursive filter
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FORTRAN Simulation for Testing Second-Order
Recursive Least Squares Filter - 2

IF(XN.EQ.1.OR.XN.EQ.2)THEN
SP11=0
SP22=0
SP33=0

ELSE
SP11=SIGNOISE*SQRT(3*(3*XN*XN-3*XN+2)/(XN*(XN+1)*

     1 (XN+2)))
SP22=SIGNOISE*SQRT(12*(16*XN*XN-30*XN+11)/

     1 (XN*(XN*XN-1)*(XN*XN-4)*TS*TS))
SP33=SIGNOISE*SQRT(720/(XN*(XN*XN-1)*(XN*XN-4)

     1 *TS*TS*TS*TS))
ENDIF
XHERR=X-XH
XDHERR=XD-XDH
XDDHERR=XDD-XDDH
EPS=A3*TS*TS*TS*(XN-1)*(XN-2)*(XN-3)/20
EPSD=A3*TS*TS*(6*XN*XN-15*XN+11)/10
EPSDD=3*A3*TS*(XN-1)
WRITE(9,*)T,X,XS,XH,XD,XDH,XDD,XDDH
WRITE(1,*)T,X,XS,XH,XD,XDH,XDD,XDDH
WRITE(2,*)T,XHERR,SP11,-SP11,EPS,XDHERR,SP22,-SP22,EPSD,

     1 XDDHERR,SP33,-SP33,EPSDD
 10 CONTINUE

CLOSE(1)
CLOSE(2)
PAUSE
END

Actual errors in estimates
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Second-Order Recursive Filter is Able to Track
Second-Order Signal Plus Noise

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

500

400

300

200

100

0

-100

1086420

Time (Sec)

True Signal

Measurement

Estimate
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Estimate of Derivative is Excellent

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-200

-100

0

100

200

1086420

Time (Sec)

True Derivative

Estimate
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Estimate of Second Derivative is Also Excellent

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-40

-20

0

20

40

1086420

Time (Sec)

True Second Derivative

Estimate
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Error in Estimate of First State Appears to be
Within Theoretical Error Bounds

Theory
P11k

 = 
3(3k2-3k+2)!n

2

k(k+1)(k+2)

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-60

-40

-20

0

20

40

1086420

Time (Sec)

Second-Order Recursive
Least Squares Filter

Simulation

Theory

Theory
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Error in Estimate of Second State Appears to be
Within Theoretical Error Bounds

Theory
P22k

 = 
12(16k2-30k+11)!n

2

k(k2-1)(k2-4)Ts
2

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-200

-100

0

100

200

1086420

Time (Sec)

Second-Order Recursive
Least Squares Filter

Simulation

Theory

Theory
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Error in Estimate of Third State Appears to be
Within Theoretical Error Bounds

Theory
P33k

 = 
720!n

2

k(k2-1)(k2-4)Ts
4

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-40

-20

0

20

40

1086420

Time (Sec)

Second-Order Recursive
Least Squares FilterSimulation

Theory

Theory
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Multiple Runs Indicate That on Average the Error in
the Estimate of First State Appears to be Within

Error Bounds 68% of the Time

Theory
P11k

 = 
3(3k2-3k+2)!n

2

k(k+1)(k+2)

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-100

-50

0

50

100

1086420

Time (Sec)

Second-Order Filter
5 Runs

Theory

Theory
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Multiple Runs Indicate That on Average the Error in
the Estimate of Second State Appears to be Within

Error Bounds 68% of the Time

Theory
P22k

 = 
12(16k2-30k+11)!n

2

k(k2-1)(k2-4)Ts
2

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-200

-100

0

100

200

1086420

Time (Sec)

Second-Order Filter
5 RunsTheory

Theory
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Multiple Runs Indicate That on Average the Error in
the Estimate of Third State Appears to be Within

Error Bounds 68% of the Time

Theory
P33k

 = 
720!n

2

k(k2-1)(k2-4)Ts
4

Measurement
x* = 2 - 2t +5t2+ noise

!noise = 50

-40

-20

0

20

40

1086420

Time (Sec)

Second-Order Filter
5 RunsTheory

Theory
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Second-Order Recursive Filter is Unable to Track
the First State of a Third-Order Polynomial

Measurement
x* = 1 + 2t + 3t2 + 4t3

4000

3000

2000

1000

0

1086420

Time (Sec)

Second-Order Filter
Third-Order Signal True Signal

Estimate
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Second-Order Recursive Filter is Unable to Track
the Second State of a Third-Order Polynomial

Measurement
x* = 1 + 2t + 3t2 + 4t3

1200

1000

800

600

400

200

0

86420

Time (Sec)

True x Dot

Estimate

Second-Order Filter
Third-Order Signal
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Second-Order Recursive Filter is Unable to Track
the Third State of a Third-Order Polynomial

Measurement
x* = 1 + 2t + 3t2 + 4t3

300

250

200

150

100

50

0

86420

Time (Sec)

Second-Order Filter
Third-Order Signal

True x Double Dot

Estimate
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Simulation Results and Truncation Error Formula
for the First State are in Excellent Agreement

Theory
!k = 1

20
a

3

Ts
3(k-1)(k-2)(k-3)

Measurement
x* = 1 + 2t + 3t2 + 4t3

200

150

100

50

0

1086420

Time (Sec)

Second-Order Filter
Third-Order Signal

Theory and Simulation
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Simulation Results and Truncation Error Formula
for the Second State are in Excellent Agreement

!k = 1
10

a
3

Ts
2(6k2-15k+11)

TheoryMeasurement
x* = 1 + 2t + 3t2 + 4t3

200

150

100

50

0

1086420

Time (Sec)

Second-Order Filter
Third-Order Signal

Theory and Simulation
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Simulation Results and Truncation Error Formula
for the Third State are in Excellent Agreement

Theory
!k = 3a3Ts(k-1)

Measurement
x* = 1 + 2t + 3t2 + 4t3

200

150

100

50

0

1086420

Time (Sec)

Theory and Simulation

Second-Order Filter
Third-Order Signal
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Recursive Least Squares Filter Comparison and
Summary
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Recursive Least Squares Filter Comparison in
Terms of Structure

1 State

Filter Gains

Resk = xk
* - xk-1 

xk = xk-1 + K1k
Resk

K1k
 = 1

k

2 State Resk = xk
* - xk-1 - xk-1Ts

xk = xk-1 + xk-1Ts + K1k
Resk 

xk = xk-1 + K2k
Resk

K1k
 = 

2(2k-1)

k(k+1)

K2k
 = 6

k(k+1)Ts

3 State
Resk = xk

* - xk-1 - xk-1Ts - .5xk-1Ts
2

xk = xk-1 + xk-1Ts + .5xk-1Ts
2+ K1k

Resk

xk = xk-1 + xk-1Ts
2+ K2k

Resk 

xk = xk-1 + K3k
Resk

K1k
 = 

3(3k2-3k+2)

k(k+1)(k+2)
  

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2
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Standard Deviation of Errors in Estimates and
Truncation Error Formulas for Various Order

Recursive Least Squares Filters
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Error in the Estimate of the First State Decreases
with Decreasing Filter Order and Increasing

Number of Measurements Taken
1.0

0.8

0.6

0.4

0.2

0.0
100806040200

Number of Measurements, k

Error in Estimate
of First State

One-State
Two-State

Three-State
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Error in the Estimate of the Second State
Decreases with Decreasing Filter Order and
Increasing Number of Measurements Taken

0.10

0.08

0.06

0.04

0.02

0.00
100806040200

Number of Measurements, k

Two-State

Three-State

Error in Estimate
of Second State
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Error in the Estimate of the Third State Decreases
with Decreasing Filter Order and Increasing

Number of Measurements Taken
0.05

0.04

0.03

0.02

0.01

0.00
100806040200

Number of Measurements, k

Error in Estimate
of Third State

Three-State


