Continuous Polynomial Kalman Filter

Continuous Polynomial Kalman Filter Overview

- Theoretical equations
- Comparing continuous and discrete Kalman gains and covariances
 - Zeroth, first and second-order polynomial Kalman filters
- Steady-state approximations
 - Formulas for steady-state gains and covariances
 - Transfer functions for zeroth, first and second-order polynomial Kalman filters
- Filter comparisons

Fundamentals of Kalman Filtering: A Practical Approach

Theoretical Equations For Continuous Kalman Filter

Model of real world

 $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{u} + \mathbf{w}$

Process noise matrix

 $\mathbf{Q} = \mathbf{E}[\mathbf{w}\mathbf{w}^{\mathrm{T}}]$

Measurements are linearly related to states

 $\mathbf{z} = \mathbf{H}\mathbf{x} + \mathbf{v}$

Measurement noise matrix

 $\mathbf{R} = \mathbf{E}[\mathbf{v}\mathbf{v}^{\mathrm{T}}]$

Continuous Kalman filter

 $\dot{\widehat{x}} = F\widehat{x} + Gu + K(z - H\widehat{x})$

Gains obtained from continuous Riccati equations

```
\dot{\mathbf{P}} = -\mathbf{P}\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\mathbf{P} + \mathbf{P}\mathbf{F}^{T} + \mathbf{F}\mathbf{P} + \mathbf{Q}
\mathbf{K} = \mathbf{P}\mathbf{H}^{T}\mathbf{R}^{-1}
```

Comparing Continuous and Discrete Kalman Gains and Covariances

Zeroth-Order Filter

Zeroth-Order Continuous Polynomial Kalman Filter

Model of real world

 $\dot{\mathbf{x}} = \mathbf{u}_{\mathbf{s}}$ \longrightarrow $\mathbf{F} = \mathbf{0}$

Process noise matrix is scalar

 $\mathbf{Q} = \mathrm{E}(\mathrm{u}_{\mathrm{s}}^2) = \Phi_{\mathrm{s}}$

Measurement equation

 $\mathbf{x}^* = \mathbf{x} + \mathbf{v}_n$ \longrightarrow $\mathbf{H} = 1$

Measurement noise matrix is scalar

 $\mathbf{R} = E(\mathbf{v}_n^2) = \mathbf{\Phi}_n$

Riccati equation simplifies to

$$\dot{\mathbf{P}} = -\mathbf{P}\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\mathbf{P} + \mathbf{P}\mathbf{F}^{T} + \mathbf{F}\mathbf{P} + \mathbf{Q} = -\mathbf{P}\Phi_{n}^{-1}\mathbf{P} + \Phi_{s}$$
$$\dot{\mathbf{P}} = \frac{-\mathbf{P}^{2}}{\Phi_{n}} + \Phi_{s}$$
Kalman gain obtained from
$$\mathbf{K} = \mathbf{P}\mathbf{H}^{T}\mathbf{R}^{-1} = \mathbf{P}\Phi_{n}^{-1}$$
$$\mathbf{K} = \frac{\mathbf{P}}{\Phi_{n}}$$

Comparing Zeroth-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that zeroth-order recursive least squares filter gain is

 $K_k = \frac{1}{k}$ k=1,2,...,n

While variance of error in estimate is

 $P_k = \frac{\sigma_n^2}{k}$

We have just shown that variance of error on estimate for Kalman filter is

$$\dot{P} = \frac{-P^2}{\Phi_n} + \Phi_s$$

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

 $\Phi_n = \sigma_n^2 T_s$ As the sampling time gets smaller continuous and discrete gains related $K_c = \frac{K_d}{T_s}$

Integrating One-State Covariance Nonlinear Riccati **Differential Equation With MATLAB-1**

Integrating One-State Covariance Nonlinear Riccati **Differential Equation With MATLAB-2**

	T=T+H; FP=F*P; PFT=FP'; PHT=P*HT; HP=HMAT*P; PHTHP=PHT* PHTHPR=(1./F PFTFPQ=PFT+I PFTFPQ=PFT+I PFTFPQ=PFTF PD=PFTFPQ-F K=(1./PHIN)*F HPD=(H)*PD; PHPD=P+HPD PHPD=POLD P=(.5)*PPHPD	HIN)*PHTHP; P; P+Q; HTHPR; HT; +PHPD;		Riccati Itial equation	Second- order Runge- Kutta numerical integration
	if S>=(TS000	S=0.;			
		XK1=1./XJ; PDISC=SIGN2	2/XI∙		
		KTS = K(1,1)*T			
		count=count+1		1	
		ArrayT(count)=			
		ArrayKTS(cou		Save data in ar	rays for
		ArrayXK1(cou ArrayPDISC(c		plotting and wr	iting to file
		ArrayP(count)=			
		XJ=XJ+1.;	- ,		
	end		—	1	
end					
figure	ayKTS,ArrayT,A	rravXK1) grid			
xlabel('Time (Se	• •	11ay / 11 /, gild			
, ,	ous and Discrete I	Kalman Gain')			
axis([0 10 0 .5]))				
				Fun	damentals of Kalman Filtering:

First-Order Filter

Comparing First-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that first-order recursive least squares filter gains are

$$K_{1_{k}} = \frac{2(2k-1)}{k(k+1)} \quad k=1,2,...,n$$
$$K_{2_{k}} = \frac{6}{k(k+1)T_{s}}$$

While variance of error in the state estimates are

$$P_{11_{k}} = \frac{2(2k-1)\sigma_{n}^{2}}{k(k+1)}$$
$$P_{22_{k}} = \frac{12\sigma_{n}^{2}}{k(k^{2}-1)T_{s}^{2}}$$

 $K_c = \frac{K_d}{T}$

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

 $\Phi_n = \sigma_n^2 T_s$ As the sampling time gets smaller continuous and discrete gains related

Integrating Two-State Covariance Nonlinear Riccati Differential Equation With True BASIC-1

Integrating Two-State Covariance Nonlinear Riccati **Differential Equation With True BASIC-2**

	MAT HPD=(H)*PD MAT P=P+HPD T=T+H		Matrix Riccati differential equat	ion	Second- order Runge- Kutta numerical integration	
		XK1=2.*(2.*XJ-1.)/ XK2=6./(XJ*(XJ+1))*TS)			
		P11DISC=2.*(2.*X. IF XJ=1 THEN	J-1)*SIGN2/(XJ*(XJ+1.))			
		P2	22DISC=0.			
		ELSE	22DISC=12*SIGN2/(XJ*(XJ*XJ-1)*TS*TS	C)		
		END IF	$22DISC = 12^{+}SIGIN2/(AJ^{+}(AJ^{+}AJ^{-}I)^{+}IS^{+}I)$	3)		
			S,XK1,K(2,1)*TS,XK2		Write data to	
		PKIN1 #1:1,K(1,1) XJ=XJ+1.	*TS,XK1,K(2,1)*TS,XK2,P(1,1),P11DISC	C,P(2,2),P22DISC	screen and file	
	END IF					
LOOP CLOSE #1 END						
					of Kalman Filtering:6 - al Approach	16

Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for First Gain

Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for First Diagonal Element of Covariance Matrix

A Practical Approach

Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Second Diagonal Element of Covariance Matrix

Second-Order Filter

Second-Order Continuous Polynomial Kalman Filter Model of real world $\ddot{\mathbf{x}} = \mathbf{u}_{\mathbf{s}} \longrightarrow \begin{bmatrix} \dot{\mathbf{x}} \\ \ddot{\mathbf{x}} \\ \vdots \\ \ddot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \dot{\mathbf{x}} \\ \vdots \\ \ddot{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ u \\ s \end{bmatrix} \longrightarrow \mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ **Process noise matrix** $\mathbf{Q} = \Phi_{\rm s} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ **Measurement equation** $\mathbf{x}^* = \mathbf{x} + \mathbf{v}_n \quad \longrightarrow \quad \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ Measurement noise matrix is scalar $\mathbf{R} = E(\mathbf{v}_n^2) = \Phi_n$ Substitute matrices into Riccati equations $\dot{\mathbf{P}} = -\mathbf{P}\mathbf{H}^{\mathbf{T}}\mathbf{R}^{-1}\mathbf{H}\mathbf{P} + \mathbf{P}\mathbf{F}^{\mathbf{T}} + \mathbf{F}\mathbf{P} + \mathbf{O}$ $\mathbf{K} = \mathbf{P} \mathbf{H}^{\mathbf{T}} \mathbf{R}^{-1}$

Comparing Second-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that second-order recursive least squares filter gains are

 $K_{1_{k}} = \frac{3(3k^{2}-3k+2)}{k(k+1)(k+2)} \quad k=1,2,...,n$ $K_{2_{k}} = \frac{18(2k-1)}{k(k+1)(k+2)T_{s}^{2}}$ $K_{3_{k}} = \frac{60}{k(k+1)(k+2)T_{s}^{2}}$

While variance of error in the state estimates are

 $P_{11_{k}} = \frac{3(3k^{2}-3k+2)\sigma_{n}^{2}}{k(k+1)(k+2)}$ $P_{22_{k}} = \frac{12(16k^{2}-30k+11)\sigma_{n}^{2}}{k(k^{2}-1)(k^{2}-4)T_{s}^{2}}$ $P_{33_{k}} = \frac{720\sigma_{n}^{2}}{k(k^{2}-1)(k^{2}-4)T_{s}^{4}}$

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

 $\Phi_n = \sigma_n^2 T_s$ As the sampling time gets smaller continuous and discrete gains related $K_c = \frac{K_d}{T}$

Fundamentals of Kalman Filtering: A Practical Approach

Integrating Three-State Covariance Nonlinear Riccati Differential Equation With FORTRAN-1 IMPLICIT REAL*8(A-H) IMPLICIT REAL*8(O-Z) REAL*8 F(3,3),P(3,3),Q(3,3),POLD(3,3),HP(1,3) REAL*8 PD(3,3) REAL*8 HMAT(1,3),HT(3,1),FP(3,3),PFT(3,3),PHT(3,1),K(3,1) REAL*8 PHTHP(3,3),PHTHPR(3,3),PFTFP(3,3),PFTFPQ(3,3) INTEGER ORDER OPEN(1,STATUS='UNKNOWN',FILE='DATFIL') ORDER=3 T=0. S=0. Made small to get accurate answers H=.001 TS=.1TF=10. Set to zero for comparison with least squares PHIS=0. XJ=1.DO 14 I=1.ORDER DO 14 J=1,ORDER F(I,J)=0.P(I,J)=0.O(I,J)=0.14 CONTINUE DO 11 I=1,ORDER HMAT(1,I)=0. HT(I,1)=0.11 CONTINUE F(1,2)=1.F(2,3)=1.O(3.3)=PHISHMAT(1,1)=1. HT(1,1)=1.SIGN2=1.**2 PHIN=SIGN2*TS P(1,1)=100.If made too large have numerical difficulties P(2,2)=100. ◀ P(3,3)=100.Fundamentals of Kalman Filtering: **A Practical Approach**

	Riccati Differential Equation With WHILE(T<=TF)	
	DO 20 I=1,ORDER	
	DO 20 J=1,ORDER	
	POLD(I,J)=P(I,J) CONTINUE —	20
	CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP)	20
	CALL MATTRN(FP,ORDER,ORDER,PFT)	
	CALL MATMUL(P, ORDER, ORDER, HT, ORDER, 1, PHT)	
	CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)	
	CALL MATMUL(PHT,ORDER,1,HP,1,ORDER,PHTHP)	
Matrix Riccati	DO 12 I=1,ORDER DO 12 J=1,ORDER	
	PHTHPR(I,J)=PHTHP(I,J)/PHIN	
differential equation	CONTINUE	12
	CALL MATADD(PFT, ORDER, ORDER, FP, PFTFP)	
	CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)	
	CALL MATSUB(PFTFPQ,ORDER,ORDER,PHTHPR,PD)	
	DO 13 I=1,ORDER	
	K(I,1)=PHT(I,1)/PHIN CONTINUE	13
	DO 50 I=1,ORDER	15
	DO 50 J=1,ORDER	
	P(I,J)=P(I,J)+H*PD(I,J)	
	CONTINUE	50
	T=T+H	
	CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP) CALL MATTRN(FP,ORDER,ORDER,PFT)	
	CALL MATMUL(P,ORDER,ORDER,HT,ORDER,1,PHT)	
	CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)	
Matrix Riccati	CALL MATMUL(PHT, ORDER, 1, HP, 1, ORDER, PHTHP)	
	DO 15 I=1,ORDER	
differential equation	DO 15 J=1,ORDER	
	PHTHPR(I,J)=PHTHP(I,J)/PHIN CONTINUE	15
	CALL MATADD(PFT,ORDER,ORDER,FP,PFTFP)	15
	CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)	
	CALL MATSUB(PFTFPQ, ORDER, ORDER, PHTHPR, PD)	
	DO 16 I=1,ORDER	
	K(I,1)=PHT(I,1)/PHIN	16

Integrating Three-State Covariance Nonlinear Riccati Differential Equation With FORTRAN-3

Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for First Diagonal Element of Covariance Matrix

Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Second Diagonal Element of Covariance Matrix

Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Third Diagonal Element of Covariance Matrix

Steady-State Approximations

Zeroth-Order Filter

Gain Formula For Zeroth-Order Filter

In steady-state Riccati equation for zeroth-order filter is

 $\dot{P} = \frac{-P^2}{\Phi_n} + \Phi_s = 0$

We can solve equation algebraically

 $\mathbf{P} = \left(\mathbf{\Phi}_{\mathbf{s}}\mathbf{\Phi}_{\mathbf{n}}\right)^{1/2}$

Kalman gain turns out to be

$$K = \frac{P}{\Phi_n} = \frac{\left(\Phi_s \Phi_n\right)^{1/2}}{\Phi_n}$$

Or

$$\mathbf{K} = \left(\frac{\mathbf{\Phi}_{\mathrm{s}}}{\mathbf{\Phi}_{\mathrm{n}}}\right)^{1/2}$$

Thus the continuous steady-state Kalman gain only depends on the ratio of the process and measurement noise spectral densities

Steady-State Formula Accurately Predicts Kalman Covariance for Zeroth-Order Continuous Polynomial Kalman Filter

A Practical Approach

Deriving Transfer Function For Zeroth-Order Polynomial Kalman Filter

Recall continuous Kalman filter formula

 $\dot{\hat{\mathbf{x}}} = \mathbf{F}\hat{\mathbf{x}} + \mathbf{K}(\mathbf{z} - \mathbf{H}\hat{\mathbf{x}})$ $\mathbf{F} = 0$ $\mathbf{H} = 1$

Substitution yields

 $\dot{\widehat{\mathbf{x}}} = \mathbf{K}(\mathbf{x}^* - \widehat{\mathbf{x}})$

Convert to Laplace transform notation

 $s\hat{x} = K(x^* - \hat{x})$

After some manipulations we get

$$\frac{\widehat{\mathbf{x}}}{\mathbf{x}^*} = \frac{\mathbf{K}}{\mathbf{s} + \mathbf{K}}$$

Defining a natural frequency

Zeroth-Order Continuous Polynomial Kalman Filter's Natural Frequency Increases as the Ratio of Process to Measurement Noise Increases

First-Order Filter

Using symmetry we get three scalar equations with three unknowns

$$0 = 2P_{12} - \frac{P_{11}^2}{\Phi_n}$$
$$0 = P_{22} - \frac{P_{11}P_{12}}{\Phi_n}$$
$$0 = \frac{-P_{12}^2}{\Phi_n} + \Phi_s$$

Gain Formula For First-Order Filter-2

Solving the algebraic equations yields

$$\begin{split} P_{11} &= \sqrt{2} \Phi_s^{1/4} \Phi_n^{3/4} \\ P_{22} &= \sqrt{2} \Phi_s^{3/4} \Phi_n^{1/4} \\ P_{12} &= \Phi_s^{1/2} \Phi_n^{1/2} \end{split}$$
 Since

 $\mathbf{K} = \mathbf{P} \mathbf{H}^{\mathbf{T}} \mathbf{R}^{-1}$

The gains become

$$K_1 = \frac{P_{11}}{\Phi_n} = \sqrt{2} \left(\frac{\Phi_s}{\Phi_n}\right)^{1/4}$$
$$K_2 = \frac{P_{12}}{\Phi_n} = \left(\frac{\Phi_s}{\Phi_n}\right)^{1/2}$$

Fundamentals of Kalman Filtering: A Practical Approach

Steady-State Gain Formula is Accurate for Second Gain in Continuous First-Order Polynomial Kalman Filter

Steady-State Formula for First Diagonal Element of Covariance Matrix is Accurate for Continuous First-Order Polynomial Kalman Filter

Steady-State Formula for Second Diagonal Element of Covariance Matrix is Accurate for Continuous First-Order Polynomial Kalman Filter

Deriving Transfer Function For First-Order Polynomial Kalman Filter

Recall continuous Kalman filter formula

$$\dot{\widehat{\mathbf{x}}} = \mathbf{F}\,\widehat{\mathbf{x}} + \mathbf{K}\,(\mathbf{z} - \mathbf{H}\,\widehat{\mathbf{x}}) \qquad \qquad \mathbf{F} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Substitution yields

$$\dot{\widehat{x}} = \dot{\widehat{x}} + K_1(x^* - \widehat{x})$$
$$\dot{\widehat{x}} = K_2(x^* - \widehat{x})$$

Convert to Laplace transform notation

 $s\hat{\mathbf{x}} = \hat{\mathbf{x}} + \mathbf{K}_1(\mathbf{x}^* \cdot \hat{\mathbf{x}})$ $s\hat{\mathbf{x}} = \mathbf{K}_2(\mathbf{x}^* \cdot \hat{\mathbf{x}})$

After some manipulations we get

Filter Natural Frequency Increases as the Ratio of the Process to Measurement Noise Spectral Densities Increases

Gain Formula For Second-Order Filter-1

Recall regular Riccati equation

 $\dot{\mathbf{P}} = -\mathbf{P}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{H}\mathbf{P} + \mathbf{P}\mathbf{F}^{\mathsf{T}} + \mathbf{F}\mathbf{P} + \mathbf{Q}$ **Matrix symmetric** $\begin{bmatrix} \dot{\mathbf{P}}_{11} & \dot{\mathbf{P}}_{12} & \dot{\mathbf{P}}_{13} \\ \dot{\mathbf{P}}_{12} & \dot{\mathbf{P}}_{22} & \dot{\mathbf{P}}_{23} \\ \dot{\mathbf{P}}_{13} & \dot{\mathbf{P}}_{23} & \dot{\mathbf{P}}_{33} \end{bmatrix} = -\begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} \\ \mathbf{P}_{12} & \mathbf{P}_{22} & \mathbf{P}_{23} \\ \mathbf{P}_{13} & \mathbf{P}_{23} & \mathbf{P}_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Phi_{n}^{-1} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} \\ \mathbf{P}_{12} & \mathbf{P}_{22} & \mathbf{P}_{23} \\ \mathbf{P}_{13} & \mathbf{P}_{23} & \mathbf{P}_{33} \end{bmatrix} + \\ \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} \\ \mathbf{P}_{12} & \mathbf{P}_{22} & \mathbf{P}_{23} \\ \mathbf{P}_{13} & \mathbf{P}_{23} & \mathbf{P}_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{13} \\ \mathbf{P}_{12} & \mathbf{P}_{22} & \mathbf{P}_{23} \\ \mathbf{P}_{13} & \mathbf{P}_{23} & \mathbf{P}_{33} \end{bmatrix} = 0$

Using symmetry we get six scalar equations with six unknowns

$$P_{11}^{2} = 2P_{12}\Phi_{n} \qquad P_{11}P_{12} = \Phi_{n}(P_{22} + P_{13})$$

$$P_{12}^{2} = 2P_{23}\Phi_{n} \qquad P_{11}P_{13} = P_{23}\Phi_{n}$$

$$P_{13}^{2} = \Phi_{s}\Phi_{n} \qquad P_{12}P_{13} = P_{33}\Phi_{n}$$

Gain Formula For Second-Order Filter-2

Solving the algebraic equations yields

$$\begin{split} P_{11} &= 2 \Phi_s^{1/6} \Phi_n^{5/6} & P_{22} &= 3 \Phi_s^{1/2} \Phi_n^{1/2} \\ P_{12} &= 2 \Phi_s^{1/3} \Phi_n^{2/3} & P_{23} &= 2 \Phi_s^{2/3} \Phi_n^{1/3} \\ P_{13} &= \Phi_s^{1/2} \Phi_n^{1/2} & P_{33} &= 2 \Phi_s^{5/6} \Phi_n^{1/6} \\ \textbf{Since} \end{split}$$

 $\mathbf{K} = \mathbf{P} \mathbf{H}^{\mathbf{T}} \mathbf{R}^{-1}$

The gains become

$$K_1 = \frac{P_{11}}{\Phi_n} = 2\left(\frac{\Phi_s}{\Phi_n}\right)^{1/6}$$
$$K_2 = \frac{P_{12}}{\Phi_n} = 2\left(\frac{\Phi_s}{\Phi_n}\right)^{1/3}$$
$$K_3 = \frac{P_{13}}{\Phi_n} = \left(\frac{\Phi_s}{\Phi_n}\right)^{1/2}$$

A Practical Approach

Steady-State Gain Formula is Accurate for Third Gain in Continuous Second-Order Polynomial Kalman Filter

A Practical Approach

Deriving Transfer Function For Second-Order Polynomial Kalman Filter

Recall continuous Kalman filter formula

$$\dot{\widehat{\mathbf{x}}} = \mathbf{F}\,\widehat{\mathbf{x}} + \mathbf{K}\,(\mathbf{z} - \mathbf{H}\,\widehat{\mathbf{x}})$$

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad \mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

Substitution yields

 $\dot{\widehat{x}} = \dot{\widehat{x}} + K_1(x^* - \hat{x})$ $\dot{\widehat{x}} = \dot{\widehat{x}} + K_2(x^* - \hat{x})$ $\dot{\widehat{x}} = K_3(x^* - \hat{x})$

Convert to Laplace transform notation

 $s\widehat{x} = \widehat{\dot{x}} + K_1(x^* \cdot \widehat{x})$ $s\widehat{\ddot{x}} = \widehat{\ddot{x}} + K_2(x^* \cdot \widehat{x})$ $s\widehat{\ddot{x}} = K_3(x^* \cdot \widehat{x})$

After some manipulations we get

$$\frac{\widehat{x}}{x^*} = \frac{K_3 + sK_2 + s^2K_1}{K_3 + sK_2 + s^2K_1 + s^3}$$

Defining a natural frequency

(-1)1/6

A Practical Approach

Second-Order Kalman Filter Natural Frequency Increases With Increasing Ratio of Process to Measurement Noise Spectral Density

Fundamentals of Kalman Filtering: A Practical Approach

Filter Comparison

Transfer Functions and Magnitudes for Different Order Polynomial Kalman Filters

Name	Laplace Transform	Magnitude
Zeroth-Order	$x^* = 1 + \frac{s}{\omega_0}$	$\left \frac{\widehat{\mathbf{x}}}{\mathbf{x}^*}\right = \frac{1}{\sqrt{1 + \left(\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_0}\right)^2}}$
First-Order	$\frac{\hat{x}}{x^{*}} = \frac{1 + \frac{\sqrt{2}s}{\omega_{0}}}{1 + \frac{\sqrt{2}s}{\omega_{0}} + \frac{s^{2}}{\omega_{0}^{2}}}$	$\begin{vmatrix} \hat{\mathbf{x}} \\ \mathbf{x}^* \end{vmatrix} = \sqrt{\frac{1 + \left(\frac{\sqrt{2}\omega}{\omega_0}\right)^2}{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{\sqrt{2}\omega}{\omega_0}\right)^2}}$
Second-Order	$\frac{\hat{x}}{x^*} = \frac{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2}}{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2} + \frac{s^3}{\omega_0^3}}$	

FORTRAN Program to Calculate Magnitudes of Kalman Filter Transfer Functions

Continuous Polynomial Kalman Filter Summary

- Continuous Kalman filtering equations useful for understanding the properties of the discrete filter
- Relationship between continuous and discrete Kalman gains and covariances established
- Formulas for steady-state Kalman gains and covariances derived
- Transfer functions for zeroth, first and second-order polynomial Kalman filters derived
- Bandwidth of polynomial Kalman filter shown to be proportional to ratio of process to measurement noise spectral densities