Continuous Polynomial Kalman Filter
Continuous Polynomial Kalman Filter Overview

- Theoretical equations
- Comparing continuous and discrete Kalman gains and covariances
 - Zeroth, first and second-order polynomial Kalman filters
- Steady-state approximations
 - Formulas for steady-state gains and covariances
 - Transfer functions for zeroth, first and second-order polynomial Kalman filters
- Filter comparisons
Theoretical Equations For Continuous Kalman Filter

Model of real world

\[\dot{x} = Fx + Gu + w \]

Process noise matrix

\[Q = E[ww^T] \]

Measurements are linearly related to states

\[z = Hx + v \]

Measurement noise matrix

\[R = E[vv^T] \]

Continuous Kalman filter

\[\hat{x} = F\hat{x} + Gu + K(z - H\hat{x}) \]

Gains obtained from continuous Riccati equations

\[P = -PH^TR^{-1}HP + PFT + FP + Q \]
\[K = PH^TR^{-1} \]
Comparing Continuous and Discrete Kalman Gains and Covariances
Zeroth-Order Filter
Zeroth-Order Continuous Polynomial Kalman Filter

Model of real world
\[
\dot{x} = u_s \quad \rightarrow \quad F = 0
\]

Process noise matrix is scalar
\[
Q = E(u_s^2) = \Phi_s
\]

Measurement equation
\[
x^* = x + v_n \quad \rightarrow \quad H = 1
\]

Measurement noise matrix is scalar
\[
R = E(v_n^2) = \Phi_n
\]

Riccati equation simplifies to
\[
\dot{P} = -PH^T R^{-1} HP + P F^T + FP + Q = - P\Phi_n^{-1} P + \Phi_s
\]
\[
\dot{P} = \frac{P^2}{\Phi_n} + \Phi_s
\]

Kalman gain obtained from
\[
K = PH^T R^{-1} = P\Phi_n^{-1}
\]
\[
K = \frac{P}{\Phi_n}
\]
Comparing Zeroth-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that zeroth-order recursive least squares filter gain is

$$K_k = \frac{1}{k} \quad k=1,2,...,n$$

While variance of error in estimate is

$$P_k = \frac{\sigma_n^2}{k}$$

We have just shown that variance of error on estimate for Kalman filter is

$$\dot{P} = -P^2 + \Phi_s$$

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

$$\Phi_n = \sigma_n^2 T_s$$

As the sampling time gets smaller continuous and discrete gains related

$$K_c = \frac{K_d}{T_s}$$
Integrating One-State Covariance Nonlinear Riccati Differential Equation With MATLAB-1

ORDER=1;
T=0.;
S=0.;
H=.001;
TS.=1;
TF=10.;
PHI=0.;
XJ=1.;
F=[0];
P=[100];
Q=[PHI];
HMAT=[1];
HT=HMAT';
SIGN2=1.^2;
PHIN=SIGN2*TS;
count=0;
while T<=TF

Made small to get accurate answers
Set to zero for comparison with least squares
If made too large have numerical difficulties

Relationship between continuous and discrete noise

S=S+H;
POLD=P;
FP=F*P;
PFT=FP';
PHT=P*HT;
HP=HMAT*P;
PHTHP=PHT*HP;
PHTHP=(1./PHIN)*PHTHP;
PFTFP=PFT+FP;
PFTFPQ=PFTFP+Q;
PD=PFTFPQ-PHTHP;
K=(1./PHIN)*PHT;
HPD=(H)*PD;
P=P+HPD;

Matrix Riccati differential equation

Second-order Runge-Kutta numerical integration
Integrating One-State Covariance Nonlinear Riccati Differential Equation With MATLAB-2

Matrix Riccati differential equation

Second-order Runge-Kutta numerical integration

Save data in arrays for plotting and writing to file

Fundamentals of Kalman Filtering: A Practical Approach
Continuous and Discrete Kalman Gains are Identical for Zeroth-Order System

\[K_c = \frac{K_d}{T_s} \] \[K_d = \frac{1}{k} \quad k=1,2,\ldots,n \]
Continuous and Discrete Covariances are Identical for Zeroth-Order System

\[P_c = P_d \]

\[P_d = \frac{\sigma^2}{k} \]

Diagram showing the covariance over time with a note that for a zeroth-order system, the continuous and discrete covariances are identical. The diagram includes a plot with time on the x-axis and covariance on the y-axis, showing how the covariance decreases over time.
First-Order Filter
First-Order Continuous Polynomial Kalman Filter

Model of real world

\[\dot{x} = u_s \quad \Rightarrow \quad \begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix} + \begin{bmatrix} 0 \\ u_s \end{bmatrix} \quad \Rightarrow \quad F = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \]

Process noise matrix

\[Q = E \left[\begin{bmatrix} 0 \\ u_s \end{bmatrix} \begin{bmatrix} 0 & u_s \end{bmatrix} \right] = \Phi_s \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

Measurement equation

\[x^* = x + v_n \quad \Rightarrow \quad x^* = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ \dot{\hat{x}} \end{bmatrix} + v_n \quad \Rightarrow \quad H = \begin{bmatrix} 1 & 0 \end{bmatrix} \]

Measurement noise matrix is scalar

\[R = E(v_n^2) = \Phi_n \]

Substitute matrices into Riccati equations

\[P = -PH^T R^{-1} HP + PF^T + FP + Q \]

\[K = PH^TR^{-1} \]
Comparing First-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that first-order recursive least squares filter gains are

\[K_{1k} = \frac{2(2k-1)}{k(k+1)} \quad \text{k} = 1, 2, ..., n \]
\[K_{2k} = \frac{6}{k(k+1)T_s} \]

While variance of error in the state estimates are

\[P_{11k} = \frac{2(2k-1)\sigma_n^2}{k(k+1)} \]
\[P_{22k} = \frac{12\sigma_n^2}{k^2(k^2-1)T_s^2} \]

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

\[\Phi_n = \sigma_n^2 T_s \]

As the sampling time gets smaller continuous and discrete gains related

\[K_c = \frac{K_d}{T_s} \]
OPTION NOLET
REM UNSAVE "DATFIL"
OPEN #1:NAME "DATFIL",ACCESS OUTPUT,CREATE NEW, ORGANIZATION TEXT
SET #1: MARGIN 1000
DIM F(2,2),P(2,2),Q(2,2),POLD(2,2),HP(1,2)
DIM PD(2,2)
DIM HMAT(1,2),HT(2,1),FP(2,2),PFT(2,2),PHT(2,1),K(2,1)
DIM PHTHP(2,2),PHTHPR(2,2),PFTFP(2,2),PFTFPQ(2,2),HPD(2,2),PHPD(2,2),PPHPD(2,2)
ORDER=2
T=0.
S=0.
H=.001
TS=.1
TF=10.
PHIS=0.
XJ=1.
MAT F=ZER(ORDER,ORDER)
MAT P=ZER(ORDER,ORDER)
MAT Q=ZER(ORDER,ORDER)
MAT HMAT=ZER(1,ORDER)
MAT HT=ZER(ORDER,1)
F(1,2)=1.
Q(2,2)=PHIS
HMAT(1,1)=1.
HT(1,1)=1.
SIGN2=1.^2
PHIN=SIGN2*TS
P(1,1)=100.
P(2,2)=100.
DO WHILE T<=TF
 S=S+H
 MAT POLD=P
 MAT FP=F*P
 MAT PFT=TRN(FP)
 MAT PHT=P*HT
 MAT HP=HMAT*P
 MAT PHTHP=PHT*HP
 MAT PHTHPR=(1./PHIN)*PHTHP
 MAT PFTFP=PFT+FP
 MAT PFTFPQ=PFTFP+Q
 MAT PD=PFTFPQ-PHTHPR
 MAT K=(1./PHIN)*PHT
 Made small to get accurate answers
 Set to zero for comparison with least squares
 If made too large have numerical difficulties
 Matrix Riccati differential equation
 Second-order Runge-Kutta numerical integration
Integrating Two-State Covariance Nonlinear Riccati Differential Equation With True BASIC-2

Matrix Riccati differential equation

Second-order Runge-Kutta numerical integration

Write data to screen and file
Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for First Gain

\[K_{1c} = \frac{K_{1d}}{T_s} \]

\[K_{1d} = \frac{2(2k-1)}{k(k+1)} \quad k=1,2,...,n \]
Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for Second Gain

\[K_{2c} = \frac{K_{2d}}{T_s} \]
\[K_{2d} = \frac{6}{k(k+1)T_s} \]
Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for First Diagonal Element of Covariance Matrix

\[P_{11c} = P_{11d} \]

\[P_{11d} = \frac{2(2k-1)\sigma_n^2}{k(k+1)} \]
Integrating Two-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Second Diagonal Element of Covariance Matrix

\[P_{22c} = P_{22d} \]

\[P_{22d} = \frac{12\sigma_n^2}{k(k^2-1)T_s^2} \]
Second-Order Filter
Second-Order Continuous Polynomial Kalman Filter

Model of real world

\[\begin{bmatrix} \dot{x} \\ \dot{\dot{x}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ u_s \end{bmatrix} \]

\[F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]

Process noise matrix

\[Q = \Phi_s \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Measurement equation

\[x^* = x + v_n \]

\[H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \]

Measurement noise matrix is scalar

\[R = \Phi_n = \Phi_n \]

Substitute matrices into Riccati equations

\[\dot{P} = -PH^T R^{-1} HP + PF^T + FP + Q \]

\[K = PH^T R^{-1} \]
Comparing Second-Order Polynomial Kalman Filter Gain to Recursive Least Squares Filter Gain

Recall that second-order recursive least squares filter gains are

\[K_{1k} = \frac{3(3k^2 - 3k + 2)}{k(k+1)(k+2)} \quad k=1,2,\ldots,n \]

\[K_{2k} = \frac{18(2k-1)}{k(k+1)(k+2)T_s} \]

\[K_{3k} = \frac{60}{k(k+1)(k+2)T_s^2} \]

While variance of error in the state estimates are

\[P_{11k} = \frac{3(3k^2 - 3k + 2)\sigma_n^2}{k(k+1)(k+2)} \]

\[P_{22k} = \frac{12(16k^2 - 30k + 11)\sigma_n^2}{k(k^2 - 1)(k^2 - 4)T_s^2} \]

\[P_{33k} = \frac{720\sigma_n^2}{k(k^2 - 1)(k^2 - 4)T_s^4} \]

The two filters should be equivalent if the Kalman filter has zero process noise

The spectral density of continuous noise is related to the variance of discrete noise according to

\[\phi_n = \sigma_n^2 T_s \]

As the sampling time gets smaller continuous and discrete gains related
Integrating Three-State Covariance Nonlinear Riccati Differential Equation With FORTRAN-1

IMPLICIT REAL*8(A-H)
IMPLICIT REAL*8(O-Z)
REAL*8 F(3,3),P(3,3),Q(3,3),POLD(3,3),HP(1,3)
REAL*8 PD(3,3)
REAL*8 HMAT(1,3),HT(3,1),FP(3,3),PFT(3,3),PHT(3,1),K(3,1)
REAL*8 PTHHP(3,3),PTHPR(3,3),PFTFP(3,3),PFTFPQ(3,3)
INTEGER ORDER
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER=3
T=0.
S=0.
H=.001
TS=.1
TF=10.
PHIS=0.
XJ=1.
DO 14 I=1,ORDER
 DO 14 J=1,ORDER
 F(I,J)=0.
 P(I,J)=0.
 Q(I,J)=0.
14 CONTINUE
DO 11 I=1,ORDER
 HMAT(1,I)=0.
 HT(I,1)=0.
11 CONTINUE
F(1,2)=1.
F(2,3)=1.
Q(3,3)=PHIS
HMAT(1,1)=1.
HT(1,1)=1.
SIGN2=1.**2
PHIN=SIGN2*TS
P(1,1)=100.
P(2,2)=100.
P(3,3)=100.

Made small to get accurate answers
Set to zero for comparison with least squares

If made too large have numerical difficulties
Integrating Three-State Covariance Nonlinear Riccati Differential Equation With FORTRAN-2

WHILE(T<=TF)
 DO 20 I=1,ORDER
 DO 20 J=1,ORDER
 POLD(I,J)=P(I,J)
 CONTINUE
 CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP)
 CALL MATTRN(FP,ORDER,ORDER,PFT)
 CALL MATMUL(P,ORDER,ORDER,HT,ORDER,1,PHT)
 CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)
 CALL MATMUL(PHT,ORDER,1,HP,1,ORDER,PHTHP)
 DO 12 I=1,ORDER
 DO 12 J=1,ORDER
 PHTHPR(I,J)=PHTHP(I,J)/PHIN
 CONTINUE
 CALL MATADD(PFT,ORDER,ORDER,FP,PFTFP)
 CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)
 CALL MATSUB(PFTFPQ,ORDER,ORDER,PHTHPR,PD)
 DO 13 I=1,ORDER
 K(I,1)=PHT(I,1)/PHIN
 CONTINUE
 DO 50 I=1,ORDER
 DO 50 J=1,ORDER
 P(I,J)=P(I,J)+H*PD(I,J)
 CONTINUE
 T=T+H
 CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP)
 CALL MATTRN(FP,ORDER,ORDER,PFT)
 CALL MATMUL(P,ORDER,ORDER,HT,ORDER,1,PHT)
 CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)
 CALL MATMUL(PHT,ORDER,1,HP,1,ORDER,PHTHP)
 DO 15 I=1,ORDER
 DO 15 J=1,ORDER
 PHTHPR(I,J)=PHTHP(I,J)/PHIN
 CONTINUE
 CALL MATADD(PFT,ORDER,ORDER,FP,PFTFP)
 CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)
 CALL MATSUB(PFTFPQ,ORDER,ORDER,PHTHPR,PD)
 DO 16 I=1,ORDER
 K(I,1)=PHT(I,1)/PHIN
 CONTINUE
 CONTINUE

Matrix Riccati differential equation

Matrix Riccati differential equation
DO 60 I=1,ORDER
DO 60 J=1,ORDER
 P(I,J)=.5*(POLD(I,J)+P(I,J)+H*PD(I,J))
CONTINUE
S=S+H
IF(S>=(TS-.00001))THEN
 S=0.
 XK1=3.*(3*XJ*XJ-3.*XJ+2.)/(XJ*(XJ+1)*(XJ+2))
 XK2=18.*(2.*XJ-1.)/(XJ*(XJ+1)*(XJ+2)*TS)
 XK3=60./(XJ*(XJ+1)*(XJ+2)*TS*TS)
 P11DISC=3*(3*XJ*XJ-3*XJ+2)*SIGN2/(XJ*(XJ+1)*
 (XJ+2))
 IF(XJ.EQ.1.OR.XJ.EQ.2)THEN
 P22DISC=0.
 P33DISC=0.
 ELSE
 P22DISC=12*(16*XJ*XJ-30*XJ+11)*SIGN2/
 (XJ*(XJ*XJ-1)*(XJ*XJ-2)*TS*TS)
 P33DISC=720*SIGN2/(XJ*(XJ*XJ-1)*(XJ*XJ-2)*
 TS**4)
 ENDIF
 WRITE(9,*)T,K(1,1)*TS,XK1,K(2,1)*TS,XK2,
 K(3,1)*TS,TK3,P(1,1),P11DISC,P(2,2),
 P22DISC,P(3,3),P33DISC
 WRITE(1,*)T,K(1,1)*TS,XK1,K(2,1)*TS,XK2,
 K(3,1)*TS,TK3,P(1,1),P11DISC,P(2,2),
 P22DISC,P(3,3),P33DISC
 XJ=XJ+1.
ENDIF
END DO
PAUSE
CLOSE(1)
END

Integrating Three-State Covariance Nonlinear Riccati Differential Equation With FORTRAN-3

Second-order Runge-Kutta numerical integration

Write data to screen and file
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for First Gain

\[
K_{1c} = \frac{K_{1d}}{T_s} \quad k=1,2,\ldots,n
\]

\[
K_{1d} = \frac{3(3k^2-3k+2)}{k(k+1)(k+2)}
\]
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for Second Gain

\[K_{2c} = \frac{K_{2d}}{T_s} \]

\[K_{2d} = \frac{18(2k-1)}{k(k+1)(k+2)T_s} \]
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match With Formula for Third Gain

\[K_{3c} = K_{3d} \frac{T_s}{\tau} \]

\[K_{3d} = \frac{60}{k(k+1)(k+2)T_s^2} \]
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for First Diagonal Element of Covariance Matrix

\[P_{11c} = P_{11d} \]

\[P_{11d} = \frac{3(3k^2 - 3k + 2)\sigma_n^2}{k(k+1)(k+2)} \]

\[T_s = .1 \text{ s}, \sigma_n = 1, \Phi_s = 0 \]
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Second Diagonal Element of Covariance Matrix

\[P_{22c} = P_{22d} \]

\[P_{22d} = \frac{12(16k^2 - 30k + 11)\sigma_n^2}{k(k^2 - 1)(k^2 - 4)T_s^2} \]

Time (Sec)

\[T_s = 0.1 \text{ S}, \sigma_n = 1, \Phi = 0 \]
Integrating Three-State Nonlinear Matrix Riccati Differential Equation Yields Good Match for Third Diagonal Element of Covariance Matrix

\[P_{33c} = P_{33d} \]

\[P_{33d} = \frac{720\sigma_n^2}{k(k^2-1)(k^2-4)T_s^4} \]

\(T_s = 0.1 \text{ S, } \sigma_n = 1 \)
\(\Phi_s = 0 \)
Steady-State Approximations
Zeroth-Order Filter
Gain Formula For Zeroth-Order Filter

In steady-state Riccati equation for zeroth-order filter is

\[\dot{P} = \frac{P^2}{\Phi_n} + \Phi_s = 0 \]

We can solve equation algebraically

\[P = (\Phi_s \Phi_n)^{1/2} \]

Kalman gain turns out to be

\[K = \frac{P}{\Phi_n} = (\Phi_s \Phi_n)^{1/2} \]

Or

\[K = \left(\frac{\Phi_s}{\Phi_n}\right)^{1/2} \]

Thus the continuous steady-state Kalman gain only depends on the ratio of the process and measurement noise spectral densities.
Steady-State Formula Accurately Predicts Kalman Gain for Zeroth-Order Continuous Polynomial Kalman Filter

\[K = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
Steady-State Formula Accurately Predicts Kalman Covariance for Zeroth-Order Continuous Polynomial Kalman Filter

\[P = (\Phi_s \Phi_n)^{1/2} \]
Recall continuous Kalman filter formula

\[\hat{x} = F\hat{x} + K(z - H\hat{x}) \]

\[F = 0 \quad H = 1 \]

Substitution yields

\[\hat{x} = K(x^* - \hat{x}) \]

Convert to Laplace transform notation

\[s\hat{x} = K(x^* - \hat{x}) \]

After some manipulations we get

\[\frac{\hat{x}}{x^*} = \frac{K}{s + K} \]

Defining a natural frequency

\[K = \left(\frac{\Phi_n}{\Phi_n}\right)^{1/2} \quad \omega_0 = \left(\frac{\Phi_n}{\Phi_n}\right)^{1/2} \]

We can rewrite filter transfer function as

\[\frac{\hat{x}}{x^*} = \frac{1}{1 + \frac{s}{\omega_0}} \quad \text{Low-pass filter} \]
Zeroth-Order Continuous Polynomial Kalman Filter’s Natural Frequency Increases as the Ratio of Process to Measurement Noise Increases

\[\omega_0 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
First-Order Filter
Gain Formula For First-Order Filter-1

Recall regular Riccati equation

\[P = -PH^TR^{-1}HP + PF^TP + Q \]

From steady-state Riccati equation

\[
\begin{bmatrix}
\dot{P}_{11} & \dot{P}_{12} \\
\dot{P}_{12} & \dot{P}_{22}
\end{bmatrix} = \begin{bmatrix}
P_{11} & P_{12} \\
P_{12} & P_{22}
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \Phi_n^{-1} \begin{bmatrix}
P_{11} & P_{12} \\
P_{12} & P_{22}
\end{bmatrix} + \begin{bmatrix}
P_{11} & P_{12} \\
P_{12} & P_{22}
\end{bmatrix} \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix} + \begin{bmatrix}
0 & 0 \\
0 & \Phi_s
\end{bmatrix} = 0
\]

Using symmetry we get three scalar equations with three unknowns

\[0 = 2P_{12} - \frac{P_{11}^2}{\Phi_n} \]

\[0 = P_{22} - \frac{P_{11}P_{12}}{\Phi_n} \]

\[0 = -\frac{P_{12}^2}{\Phi_n} + \Phi_s \]
Gain Formula For First-Order Filter-2

Solving the algebraic equations yields

\[P_{11} = \sqrt{2} \Phi_s^{1/4} \Phi_n^{3/4} \]

\[P_{22} = \sqrt{2} \Phi_s^{3/4} \Phi_n^{1/4} \]

\[P_{12} = \Phi_s^{1/2} \Phi_n^{1/2} \]

Since

\[K = PH^T R^{-1} \]

The gains become

\[K_1 = \frac{P_{11}}{\Phi_n} = \sqrt{2} \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} \]

\[K_2 = \frac{P_{12}}{\Phi_n} = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
Steady-State Gain Formula is Accurate for First Gain in Continuous First-Order Polynomial Kalman Filter

\[K_1 = \sqrt{2} \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} \]
Steady-State Gain Formula is Accurate for Second Gain in Continuous First-Order Polynomial Kalman Filter

\[K_2 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
Steady-State Formula for First Diagonal Element of Covariance Matrix is Accurate for Continuous First-Order Polynomial Kalman Filter

\[P_{11} = \sqrt{2} \Phi_s^{1/4} \Phi_n^{3/4} \]
Steady-State Formula for Second Diagonal Element of Covariance Matrix is Accurate for Continuous First-Order Polynomial Kalman Filter

\[P_{22} = \gamma 2 \Phi_s^{3/4} \Phi_n^{1/4} \]
Deriving Transfer Function For First-Order Polynomial Kalman Filter

Recall continuous Kalman filter formula

\[\dot{\hat{x}} = F \hat{x} + K (z - H \hat{x}) \]

\[F = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad H = \begin{bmatrix} 1 & 0 \end{bmatrix} \]

Substitution yields

\[\dot{\hat{x}} = \hat{x} + K_1(x^* - \hat{x}) \]
\[\dot{\hat{x}} = K_2(x^* - \hat{x}) \]

Convert to Laplace transform notation

\[s\hat{x} = \hat{x} + K_1(x^* - \hat{x}) \]
\[s\hat{x} = K_2(x^* - \hat{x}) \]

After some manipulations we get

\[\frac{\hat{x}}{x^*} = \frac{K_2 + K_1 s}{s^2 + K_2 + K_1 s} \]

Defining a natural frequency

\[K_1 = \sqrt{2} \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} \]
\[K_2 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \rightarrow \omega_0 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} \rightarrow K_1 = P_{11} = \sqrt{2} \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} = \sqrt{2} \omega_0 \]
\[K_2 = P_{12} = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} = \omega_0^2 \]

We can rewrite filter transfer function as

\[\frac{\hat{x}}{x^*} = \frac{1 + \sqrt{2} s}{\omega_0} \frac{\omega_0}{1 + \sqrt{2} s + s^2} \frac{\omega_0}{\omega_0} \]

Fundamentals of Kalman Filtering: A Practical Approach
Filter Natural Frequency Increases as the Ratio of the Process to Measurement Noise Spectral Densities Increases

\[\omega_0 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/4} \]
Second-Order Filter
Gain Formula For Second-Order Filter-1

Recall regular Riccati equation

\[\mathbf{P} = - \mathbf{P} \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H} \mathbf{P} + \mathbf{F} \mathbf{P}^{T} + \mathbf{P} \mathbf{F} + \mathbf{Q} \]

From steady-state Riccati equation

\[
\begin{bmatrix}
\dot{P}_{11} & \dot{P}_{12} & \dot{P}_{13} \\
\dot{P}_{12} & \dot{P}_{22} & \dot{P}_{23} \\
\dot{P}_{13} & \dot{P}_{23} & \dot{P}_{33}
\end{bmatrix} = - \begin{bmatrix}
P_{11} & P_{12} & P_{13} \\
P_{12} & P_{22} & P_{23} \\
P_{13} & P_{23} & P_{33}
\end{bmatrix} \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \mathbf{P}_{n}^{-1} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
P_{11} & P_{12} & P_{13} \\
P_{12} & P_{22} & P_{23} \\
P_{13} & P_{23} & P_{33}
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \Phi_{n}
\end{bmatrix} = 0
\]

Using symmetry we get six scalar equations with six unknowns

\[P_{11}^{2} = 2P_{12}\Phi_{n} \quad P_{11}P_{12} = \Phi_{n}(P_{22} + P_{13}) \]

\[P_{12}^{2} = 2P_{23}\Phi_{n} \quad P_{11}P_{13} = P_{23}\Phi_{n} \]

\[P_{13}^{2} = \Phi_{n}\Phi_{n} \quad P_{12}P_{13} = P_{33}\Phi_{n} \]
Gain Formula For Second-Order Filter-2

Solving the algebraic equations yields

\[P_{11} = 2\Phi_s^{1/6} \Phi_n^{5/6} \]
\[P_{12} = 2\Phi_s^{1/3} \Phi_n^{2/3} \]
\[P_{13} = \Phi_s^{1/2} \Phi_n^{1/2} \]
\[P_{22} = 3\Phi_s^{1/2} \Phi_n^{1/2} \]
\[P_{23} = 2\Phi_s^{2/3} \Phi_n^{1/3} \]
\[P_{33} = 2\Phi_s^{5/6} \Phi_n^{1/6} \]

Since

\[K = PH^TR^{-1} \]

The gains become

\[K_1 = \frac{P_{11}}{\Phi_n} = 2 \left(\frac{\Phi_s}{\Phi_n} \right)^{1/6} \]
\[K_2 = \frac{P_{12}}{\Phi_n} = 2 \left(\frac{\Phi_s}{\Phi_n} \right)^{1/3} \]
\[K_3 = \frac{P_{13}}{\Phi_n} = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
Steady-State Gain Formula is Accurate for First Gain in Continuous Second-Order Polynomial Kalman Filter

\[K_1 = 2 \left(\frac{\Phi_s}{\Phi_n} \right)^{1/6} \]
Steady-State Gain Formula is Accurate for Second Gain in Continuous Second-Order Polynomial Kalman Filter

\[K_2 = 2 \left(\frac{\Phi_s}{\Phi_n} \right)^{1/3} \]
Steady-State Gain Formula is Accurate for Third Gain in Continuous Second-Order Polynomial Kalman Filter

\[K_3 = \left(\frac{\Phi_s}{\Phi_n} \right)^{1/2} \]
Deriving Transfer Function For Second-Order Polynomial Kalman Filter

Recall continuous Kalman filter formula

\[
\hat{x} = F\hat{x} + K(z - H\hat{x})
\]

Substitution yields

\[
\hat{x} = \hat{x} + K_1(x^* - \hat{x}) \\
\hat{x} = \hat{x} + K_2(x^* - \hat{x}) \\
\hat{x} = \hat{x} + K_3(x^* - \hat{x})
\]

Convert to Laplace transform notation

\[
s\hat{x} = \hat{x} + K_1(x^* - \hat{x}) \\
s\hat{x} = \hat{x} + K_2(x^* - \hat{x}) \\
s\hat{x} = K_3(x^* - \hat{x})
\]

After some manipulations we get

\[
\frac{\hat{x}}{x^*} = \frac{K_3 + sK_2 + s^2K_1}{K_3 + sK_2 + s^2K_1 + s^3}
\]

Defining a natural frequency

\[
\omega_0 = \left(\frac{\Phi_s}{\Phi_n}\right)^{1/6}
\]

\[
K_1 = \frac{P_{11}}{\Phi_n} = 2\left(\frac{\Phi_s}{\Phi_n}\right)^{1/6} = 2\omega_0
\]

\[
K_2 = \frac{P_{12}}{\Phi_n} = 2\left(\frac{\Phi_s}{\Phi_n}\right)^{1/3} = 2\omega_0^2
\]

\[
K_3 = \frac{P_{13}}{\Phi_n} = \left(\frac{\Phi_s}{\Phi_n}\right)^{1/2} = \omega_0^3
\]

We can rewrite filter transfer function as

\[
\frac{\hat{x}}{x^*} = \frac{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2}}{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2} + s^3}
\]
Second-Order Kalman Filter Natural Frequency Increases With Increasing Ratio of Process to Measurement Noise Spectral Density
Filter Comparison
Transfer Functions and Magnitudes for Different Order Polynomial Kalman Filters

<table>
<thead>
<tr>
<th>Name</th>
<th>Laplace Transform</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeroth-Order</td>
<td>(\frac{\hat{x}}{x^*} = \frac{1}{1 + \frac{s}{\omega_0}})</td>
<td>(\frac{</td>
</tr>
<tr>
<td>First-Order</td>
<td>(\frac{\hat{x}}{x^*} = \frac{1 + \sqrt{2}s}{\omega_0}) (\frac{1 + \sqrt{2}s + s^2}{\omega_0^2})</td>
<td>(\frac{</td>
</tr>
<tr>
<td>Second-Order</td>
<td>(\frac{\hat{x}}{x^*} = \frac{1 + 2s}{\omega_0}) (\frac{2s^2}{\omega_0^2} + \frac{s^3}{\omega_0^3})</td>
<td>(\frac{</td>
</tr>
</tbody>
</table>
FORTRAN Program to Calculate Magnitudes of Kalman Filter Transfer Functions

IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
W0=10.
DO 10 W=1.,100.
XMAG1=1./SQRT(1.+(W/W0)**2)
TOP1=1.+2.*(W/W0)**2
BOT1=(1.-(W*W/(W0*W0)))**2+2.*(W/W0)**2
XMAG2=SQRT(TOP1/(BOT1+.00001))
TOP2=(1.-2.*W*W/(W0*W0))**2+(2.*W/W0)**2
TEMP1=(1.-2.*W*W/(W0*W0))**2
TEMP2=(2.*W/W0-(W/W0)**3)**2
XMAG3=SQRT(TOP2/(TEMP1+TEMP2+.00001))
WRITE(9,*)W,XMAG1,XMAG2,XMAG3
WRITE(1,*)W,XMAG1,XMAG2,XMAG3
10 CONTINUE
CLOSE(1)
PAUSE
END

Zeroth-order filter
First-order filter
Second-order filter
Higher-Order Filters Have Less Attenuation After Filter Natural Frequency

![Graph showing magnitude vs. frequency for zeroth-, first-, and second-order filters.](image)
Increasing Filter Natural Frequency Increases Filter Bandwidth

\[\hat{x} = \frac{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2}}{1 + \frac{2s}{\omega_0} + \frac{2s^2}{\omega_0^2} + \frac{s^3}{\omega_0^3}} \]
Continuous Polynomial Kalman Filter Summary

- Continuous Kalman filtering equations useful for understanding the properties of the discrete filter
- Relationship between continuous and discrete Kalman gains and covariances established
- Formulas for steady-state Kalman gains and covariances derived
- Transfer functions for zeroth, first and second-order polynomial Kalman filters derived
- Bandwidth of polynomial Kalman filter shown to be proportional to ratio of process to measurement noise spectral densities