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Continuous Polynomial Kalman Filter
Overview

•   Theoretical equations
•   Comparing continuous and discrete Kalman gains and
covariances

-   Zeroth, first and second-order polynomial Kalman filters
•   Steady-state approximations

-   Formulas for steady-state gains and covariances
-   Transfer functions for zeroth, first and second-order 
polynomial Kalman filters

•   Filter comparisons
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Theoretical Equations For Continuous Kalman Filter
Model of real world

x =  Fx +  Gu +  w

Process noise matrix
Q = E[ww T]

Measurements are linearly related to states
z =  Hx +  v

Measurement noise matrix
R = E[vv

T]

Continuous Kalman filter
x = F x + Gu + K (z - H x)

Gains obtained from continuous Riccati equations
P = -PHTR-1HP + P FT + FP + Q

K = P H
T
R
-1
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Comparing Continuous and Discrete Kalman Gains
and Covariances
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Zeroth-Order Filter
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Zeroth-Order Continuous Polynomial Kalman Filter
Model of real world

x = us

Process noise matrix is scalar
Q = E(us

2) = !s

F = 0

Measurement equation
x* = x + vn H = 1

Measurement noise matrix is scalar
R = E(vn

2) = !n

Riccati equation simplifies to

P = -P
2

!n

 + !s

Kalman gain obtained from
K = P H

T
R
-1

 = P!n
-1

K = P

!n

P = -PHTR-1HP + P FT + FP + Q = - P!n

-1
P + !s
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Comparing Zeroth-Order Polynomial Kalman Filter
Gain to Recursive Least Squares Filter Gain

Recall that zeroth-order recursive least squares filter gain is
Kk = 1

k
   k=1,2,...,n

While variance of error in estimate is
Pk = 

!n
2

k

We have just shown that variance of error on estimate for Kalman filter is
P = -P

2

!n

 + !s

The two filters should be equivalent if the Kalman filter has zero 
process noise

The spectral density of continuous noise is related to the variance of
discrete noise according to

!n = "n
2Ts

As the sampling time gets smaller continuous and discrete gains related
Kc = 

Kd

Ts
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Integrating One-State Covariance Nonlinear Riccati
Differential Equation With MATLAB-1

ORDER=1;
T=0.;
S=0.;
H=.001;
TS=.1;
TF=10.;
PHIS=0.;
XJ=1.;
F=[0];
P=[100];
Q=[PHIS];
HMAT=[1];
HT=HMAT';
SIGN2=1. 2̂;
PHIN=SIGN2*TS;
count=0;
while T<=TF

S=S+H;
POLD=P;
FP=F*P;
PFT=FP';

 PHT=P*HT;
HP=HMAT*P;
PHTHP=PHT*HP;
PHTHPR=(1./PHIN)*PHTHP;
PFTFP=PFT+FP;

 PFTFPQ=PFTFP+Q;
PD=PFTFPQ-PHTHPR;
K=(1./PHIN)*PHT;
HPD=(H)*PD;
P=P+HPD;

Made small to get accurate answers

If made too large have numerical difficulties

Set to zero for comparison with least squares

Relationship between continuous and discrete noise

Second-
order Runge-
Kutta
numerical
integration

Matrix Riccati
differential equation
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Integrating One-State Covariance Nonlinear Riccati
Differential Equation With MATLAB-2

T=T+H;
FP=F*P;
PFT=FP';

 PHT=P*HT;
HP=HMAT*P;
PHTHP=PHT*HP;
PHTHPR=(1./PHIN)*PHTHP;
PFTFP=PFT+FP;

 PFTFPQ=PFTFP+Q;
PD=PFTFPQ-PHTHPR;
K=(1./PHIN)*PHT;
HPD=(H)*PD;
PHPD=P+HPD;
PPHPD=POLD+PHPD;
P=(.5)*PPHPD;
if S>=(TS-.00001)

S=0.;
XK1=1./XJ;
PDISC=SIGN2/XJ;
KTS=K(1,1)*TS;
count=count+1;
ArrayT(count)=T;
ArrayKTS(count)=KTS;
ArrayXK1(count)=XK1;
ArrayPDISC(count)=PDISC;
ArrayP(count)=P;
XJ=XJ+1.;

end
end
figure
plot(ArrayT,ArrayKTS,ArrayT,ArrayXK1),grid
xlabel('Time (Sec)')
ylabel('Continuous and Discrete Kalman Gain')
axis([0 10 0 .5])

Matrix Riccati
differential equation

Second-
order Runge-
Kutta
numerical
integration

Save data in arrays for
plotting and writing to file
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Continuous and Discrete Kalman Gains are
Identical for Zeroth-Order System

Kc = 
Kd

Ts

Kd = 1
k

   k=1,2,...,n

0.5

0.4

0.3

0.2

0.1

0.0

1086420

Time (Sec)

KcTs and Kd

T
s
=.1 S, !

n
=1

"
s
=0
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Continuous and Discrete Covariances are Identical
for Zeroth-Order System

Pc = Pd Pd = 
!n

2

k

0.5

0.4

0.3

0.2

0.1

0.0

1086420

Time (Sec)

T
s
=.1 S, !

n
=1

"
s
=0

Pc and Pd
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First-Order Continuous Polynomial Kalman Filter

Model of real world

Process noise matrix

Measurement equation
x* = x + vn

Measurement noise matrix is scalar
R = E(vn

2) = !n

x = us

x

x
 = 

0 1

0 0
 

x

x
 + 

0

us

Q = E  
0

us

 0 us
= !s 

0 0

0 1

F = 
0 1

0 0

x* = 1 0  
x

x
 + vn H = 1 0

Substitute matrices into Riccati equations
P = -PHTR-1HP + P FT + FP + Q

K = P H
T
R
-1
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Comparing First-Order Polynomial Kalman Filter
Gain to Recursive Least Squares Filter Gain

Recall that first-order recursive least squares filter gains are

While variance of error in the state estimates are

The two filters should be equivalent if the Kalman filter has zero 
process noise

The spectral density of continuous noise is related to the variance of
discrete noise according to

!n = "n
2Ts

As the sampling time gets smaller continuous and discrete gains related
Kc = 

Kd

Ts

K1k
 = 

2(2k-1)

k(k+1)
   k=1,2,...,n

K2k
 = 6

k(k+1)Ts

P11k
 = 

2(2k-1)!n
2

k(k+1)

P22k
 = 

12!n
2

k(k2-1)Ts
2
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Integrating Two-State Covariance Nonlinear Riccati
Differential Equation With True BASIC-1

OPTION NOLET
REM UNSAVE "DATFIL"
OPEN #1:NAME "DATFIL",ACCESS OUTPUT,CREATE NEW, ORGANIZATION TEXT
SET #1: MARGIN 1000
DIM F(2,2),P(2,2),Q(2,2),POLD(2,2),HP(1,2)
DIM PD(2,2)
DIM HMAT(1,2),HT(2,1),FP(2,2),PFT(2,2),PHT(2,1),K(2,1)
DIM PHTHP(2,2),PHTHPR(2,2),PFTFP(2,2),PFTFPQ(2,2),HPD(2,2),PHPD(2,2),PPHPD(2,2)
ORDER=2
T=0.
S=0.
H=.001
TS=.1
TF=10.
PHIS=0.
XJ=1.
MAT F=ZER(ORDER,ORDER)
MAT P=ZER(ORDER,ORDER)
MAT Q=ZER(ORDER,ORDER)
MAT HMAT=ZER(1,ORDER)
MAT HT=ZER(ORDER,1)
F(1,2)=1.
Q(2,2)=PHIS
HMAT(1,1)=1.
HT(1,1)=1.
SIGN2=1. 2̂
PHIN=SIGN2*TS
P(1,1)=100.
P(2,2)=100.
DO WHILE T<=TF

S=S+H
MAT POLD=P
MAT FP=F*P
MAT PFT=TRN(FP)

 MAT PHT=P*HT
MAT HP=HMAT*P
MAT PHTHP=PHT*HP
MAT PHTHPR=(1./PHIN)*PHTHP
MAT PFTFP=PFT+FP

 MAT PFTFPQ=PFTFP+Q
MAT PD=PFTFPQ-PHTHPR
MAT K=(1./PHIN)*PHT

Made small to get accurate answers
Set to zero for comparison with least squares

If made too large have numerical difficulties

Matrix Riccati
differential equation

Second-
order Runge-
Kutta
numerical
integration
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Integrating Two-State Covariance Nonlinear Riccati
Differential Equation With True BASIC-2
MAT HPD=(H)*PD
MAT P=P+HPD

 T=T+H
MAT FP=F*P
MAT PFT=TRN(FP)

 MAT PHT=P*HT
MAT HP=HMAT*P
MAT PHTHP=PHT*HP
MAT PHTHPR=(1./PHIN)*PHTHP
MAT PFTFP=PFT+FP

 MAT PFTFPQ=PFTFP+Q
MAT PD=PFTFPQ-PHTHPR
MAT K=(1./PHIN)*PHT
MAT HPD=(H)*PD
MAT PHPD=P+HPD
MAT PPHPD=POLD+PHPD
MAT P=(.5)*PPHPD

 IF S>(TS-.0001) THEN
S=0.
XK1=2.*(2.*XJ-1.)/(XJ*(XJ+1))
XK2=6./(XJ*(XJ+1)*TS)
P11DISC=2.*(2.*XJ-1)*SIGN2/(XJ*(XJ+1.))
IF XJ=1 THEN

P22DISC=0.
ELSE

P22DISC=12*SIGN2/(XJ*(XJ*XJ-1)*TS*TS)
END IF
PRINT T,K(1,1)*TS,XK1,K(2,1)*TS,XK2
PRINT #1:T,K(1,1)*TS,XK1,K(2,1)*TS,XK2,P(1,1),P11DISC,P(2,2),P22DISC
XJ=XJ+1.

END IF
LOOP
CLOSE #1
END

Matrix Riccati
differential equation

Second-
order Runge-
Kutta
numerical
integration

Write data to
screen and file
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Integrating Two-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match With

Formula for First Gain

K1c = 
K1d

Ts

K1d
 = 

2(2k-1)

k(k+1)
   k=1,2,...,n

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1086420

Time (Sec)

K1cTs

K1d

T
s
=.1 S, !

n=1

"
s
=0
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Integrating Two-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match With

Formula for Second Gain

K2c = 
K2d

Ts

K2d
 = 6

k(k+1)Ts

8

6

4

2

0

1086420

Time (Sec)

T
s
=.1 S, !

n=1

"
s
=0

K2cTs

K2d
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Integrating Two-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match for First

Diagonal Element of Covariance Matrix

P11c = P11d P11d
 = 

2(2k-1)!n
2

k(k+1)

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1086420

Time (Sec)

P11c

P11d

T
s
=.1 S, σ

n=1
Φ

s
=0
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Integrating Two-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match for Second

Diagonal Element of Covariance Matrix

P22c = P22d P22d
 = 

12!n
2

k(k2-1)Ts
2

10

8

6

4

2

0
1086420

Time (Sec)

T
s
=.1 S, σ

n=1
Φ

s
=0

P22c and P22d
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Second-Order Filter
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Second-Order Continuous Polynomial Kalman
Filter

Model of real world

Process noise matrix

Measurement equation
x* = x + vn

Measurement noise matrix is scalar
R = E(vn

2) = !n

Substitute matrices into Riccati equations
P = -PHTR-1HP + P FT + FP + Q

K = P H
T
R
-1

0      1     0

0      0      1

0      0      0

x
.

x
..

x
...

x

x
.

x
..

= 0

0

u
s

+ F = 

0 1 0

0 0 1

0 0 0

Q = !s 

0 0 0

0 0 0

0 0 1

H = 1 0 0



6 - 23Fundamentals of Kalman Filtering:
A Practical Approach

Comparing Second-Order Polynomial Kalman Filter
Gain to Recursive Least Squares Filter Gain

Recall that second-order recursive least squares filter gains are

While variance of error in the state estimates are

The two filters should be equivalent if the Kalman filter has zero 
process noise

The spectral density of continuous noise is related to the variance of
discrete noise according to

!n = "n
2Ts

As the sampling time gets smaller continuous and discrete gains related
Kc = 

Kd

Ts

K1k
 = 

3(3k2-3k+2)

k(k+1)(k+2)
   k=1,2,...,n

K2k
 = 

18(2k-1)

k(k+1)(k+2)Ts

K3k
 = 60

k(k+1)(k+2)Ts
2

P11k
 = 

3(3k2-3k+2)!n
2

k(k+1)(k+2)

P22k
 = 

12(16k2-30k+11)!n
2

k(k2-1)(k2-4)Ts
2

P33k
 = 

720!n
2

k(k2-1)(k2-4)Ts
4
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Integrating Three-State Covariance Nonlinear
Riccati Differential Equation With FORTRAN-1

IMPLICIT REAL*8(A-H)
IMPLICIT REAL*8(O-Z)
REAL*8 F(3,3),P(3,3),Q(3,3),POLD(3,3),HP(1,3)
REAL*8 PD(3,3)
REAL*8 HMAT(1,3),HT(3,1),FP(3,3),PFT(3,3),PHT(3,1),K(3,1)
REAL*8 PHTHP(3,3),PHTHPR(3,3),PFTFP(3,3),PFTFPQ(3,3)
INTEGER ORDER
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
ORDER=3
T=0.
S=0.
H=.001
TS=.1
TF=10.
PHIS=0.
XJ=1.
DO 14 I=1,ORDER
DO 14 J=1,ORDER
F(I,J)=0.
P(I,J)=0.
Q(I,J)=0.

 14 CONTINUE
 DO 11 I=1,ORDER

HMAT(1,I)=0.
HT(I,1)=0.

 11 CONTINUE
 F(1,2)=1.
 F(2,3)=1.

Q(3,3)=PHIS
HMAT(1,1)=1.
HT(1,1)=1.
SIGN2=1.**2
PHIN=SIGN2*TS
P(1,1)=100.
P(2,2)=100.
P(3,3)=100.

Made small to get accurate answers

Set to zero for comparison with least squares

If made too large have numerical difficulties
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Integrating Three-State Covariance Nonlinear
Riccati Differential Equation With FORTRAN-2

WHILE(T<=TF)
DO 20 I=1,ORDER
DO 20 J=1,ORDER

POLD(I,J)=P(I,J)
 20 CONTINUE
 CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP)
 CALL MATTRN(FP,ORDER,ORDER,PFT)

CALL MATMUL(P,ORDER,ORDER,HT,ORDER,1,PHT)
CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)
CALL MATMUL(PHT,ORDER,1,HP,1,ORDER,PHTHP)
DO 12 I=1,ORDER
DO 12 J=1,ORDER

PHTHPR(I,J)=PHTHP(I,J)/PHIN
 12 CONTINUE
 CALL MATADD(PFT,ORDER,ORDER,FP,PFTFP)

CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)
CALL MATSUB(PFTFPQ,ORDER,ORDER,PHTHPR,PD)
DO 13 I=1,ORDER

K(I,1)=PHT(I,1)/PHIN
 13 CONTINUE
 DO 50 I=1,ORDER

DO 50 J=1,ORDER
P(I,J)=P(I,J)+H*PD(I,J)

 50 CONTINUE
 T=T+H

CALL MATMUL(F,ORDER,ORDER,P,ORDER,ORDER,FP)
 CALL MATTRN(FP,ORDER,ORDER,PFT)

CALL MATMUL(P,ORDER,ORDER,HT,ORDER,1,PHT)
CALL MATMUL(HMAT,1,ORDER,P,ORDER,ORDER,HP)
CALL MATMUL(PHT,ORDER,1,HP,1,ORDER,PHTHP)
DO 15 I=1,ORDER
DO 15 J=1,ORDER

PHTHPR(I,J)=PHTHP(I,J)/PHIN
 15 CONTINUE
 CALL MATADD(PFT,ORDER,ORDER,FP,PFTFP)

CALL MATADD(PFTFP,ORDER,ORDER,Q,PFTFPQ)
CALL MATSUB(PFTFPQ,ORDER,ORDER,PHTHPR,PD)
DO 16 I=1,ORDER

K(I,1)=PHT(I,1)/PHIN
 16 CONTINUE

Matrix Riccati
differential equation

Matrix Riccati
differential equation
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Integrating Three-State Covariance Nonlinear
Riccati Differential Equation With FORTRAN-3

DO 60 I=1,ORDER
DO 60 J=1,ORDER

P(I,J)=.5*(POLD(I,J)+P(I,J)+H*PD(I,J))
 60 CONTINUE
 S=S+H
 IF(S>=(TS-.00001))THEN

S=0.
XK1=3.*(3*XJ*XJ-3.*XJ+2.)/(XJ*(XJ+1)*(XJ+2))
XK2=18.*(2.*XJ-1.)/(XJ*(XJ+1)*(XJ+2)*TS)
XK3=60./(XJ*(XJ+1)*(XJ+2)*TS*TS)
P11DISC=3*(3*XJ*XJ-3*XJ+2)*SIGN2/(XJ*(XJ+1)*

     1 (XJ+2))
IF(XJ.EQ.1.OR.XJ.EQ.2)THEN

P22DISC=0.
P33DISC=0.

ELSE
P22DISC=12*(16*XJ*XJ-30*XJ+11)*SIGN2/

     1 (XJ*(XJ*XJ-1)*(XJ*XJ-2)*TS*TS)
P33DISC=720*SIGN2/(XJ*(XJ*XJ-1)*(XJ*XJ

     1 -2)*TS**4)
ENDIF
WRITE(9,*)T,K(1,1)*TS,XK1,K(2,1)*TS,XK2,

     1 K(3,1)*TS,XK3,P(1,1),P11DISC,P(2,2),
     2 P22DISC,P(3,3),P33DISC

WRITE(1,*)T,K(1,1)*TS,XK1,K(2,1)*TS,XK2,
     1 K(3,1)*TS,XK3,P(1,1),P11DISC,P(2,2),
     2 P22DISC,P(3,3),P33DISC

XJ=XJ+1.
ENDIF

END DO
 PAUSE

CLOSE(1)
END

Second-
order Runge-
Kutta
numerical
integration

Write data to
screen and file
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match With

Formula for First Gain

K1c = 
K1d

Ts

K1d
 = 

3(3k2-3k+2)

k(k+1)(k+2)
   k=1,2,...,n

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1086420

Time (Sec)

T
s
=.1 S, !

n=1

"
s
=0

K1cTs

K1d
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match With

Formula for Second Gain

K2c = 
K2d

Ts

K2d
 = 

18(2k-1)

k(k+1)(k+2)Ts

10

8

6

4

2

0

1086420

Time (Sec)

T
s
=.1 S, !

n=1

"
s
=0

K2cTs

K2d
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match With

Formula for Third Gain

K3c = 
K3d

Ts

K3d
 = 60

k(k+1)(k+2)Ts
2

5

4

3

2

1

0

1086420

Time (Sec)

T
s
=.1 S, !

n=1

"
s
=0

K3cTs

K3d
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match for First

Diagonal Element of Covariance Matrix

P11c = P11d P11d
 = 

3(3k2-3k+2)!n
2

k(k+1)(k+2)

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1086420

Time (Sec)

P11c

P11d

T
s
=.1 S, σ

n=1
Φ

s
=0
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match for Second

Diagonal Element of Covariance Matrix

P22c = P22d P22d
 = 

12(16k2-30k+11)!n
2

k(k2-1)(k2-4)Ts
2

5

4

3

2

1

0
1086420

Time (Sec)

T
s
=.1 S, σ

n=1
Φ

s
=0P22c and P22d
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Integrating Three-State Nonlinear Matrix Riccati
Differential Equation Yields Good Match for Third

Diagonal Element of Covariance Matrix

P33c = P33d
P33d

 = 
720!n

2

k(k2-1)(k2-4)Ts
4

5

4

3

2

1

0
1086420

Time (Sec)

T
s
=.1 S, σ

n=1
Φ

s
=0

P33c and P33d
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Steady-State Approximations
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Zeroth-Order Filter
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Gain Formula For Zeroth-Order Filter

In steady-state Riccati equation for zeroth-order filter is

P = -P
2

!n

 + !s = 0

We can solve equation algebraically
P = (!s!n)

1/2

Kalman gain turns out to be

K = P

!n

 = 
(!s!n)

1/2

!n

Or
K = 

!s

!n

1/2

Thus the continuous steady-state Kalman gain only depends on the 
ratio of the process and measurement noise spectral densities
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Steady-State Formula Accurately Predicts Kalman
Gain for Zeroth-Order Continuous Polynomial

Kalman Filter

K = 
!s

!n

1/2

14

12

10

8

6

4

2

0

1086420

Time (Sec)

Integration

Steady-State
Formula

!
s
=10

!
n
=0.1
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Steady-State Formula Accurately Predicts Kalman
Covariance for Zeroth-Order Continuous

Polynomial Kalman Filter

P = (!s!n)
1/2

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1086420

Time (Sec)

!
s
=10

!
n
=0.1Integration

Steady-State
Formula
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Deriving Transfer Function For Zeroth-Order
Polynomial Kalman Filter

Recall continuous Kalman filter formula
x = F x + K (z - H x)

Substitution yields
x = K(x* - x)

Convert to Laplace transform notation
sx = K(x*-x)

After some manipulations we get
x

x*
 = K

s + K

Defining a natural frequency

!0 = 
"s

"n

1/2

K = 
!s

!n

1/2

 = "0

We can rewrite filter transfer function as
x

x*
 = 1

1 + s

!0

Low-pass filter

F = 0 H = 1

K = 
!s

!n

1/2
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Zeroth-Order Continuous Polynomial Kalman
Filter’s Natural Frequency Increases as the Ratio of

Process to Measurement Noise Increases

!0 = 
"s

"n

1/2

30

25

20

15

10

5

0
10008006004002000

Φ
s
/Φ

n

Zeroth-Order
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Gain Formula For First-Order Filter-1

From steady-state Riccati equation
P11 P12

P12 P22

 = -
P11 P12

P12 P22

 
1

0
 !n

-1
 1 0  

P11 P12

P12 P22

 + 
P11 P12

P12 P22

 
0 0

1 0
 + 

0 1

0 0
 

P11 P12

P12 P22

 +  
0 0

0 !s

 = 0

Recall regular Riccati equation

P = -PHTR-1HP + P FT + FP + Q

Using symmetry we get three scalar equations with three unknowns

0 = 2P12 - 
P

11

2

!n

0 = P22 - 
P11P12

!n

0 =  
- P

12

2

!n

 + !s

Matrix symmetric
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Gain Formula For First-Order Filter-2

Solving the algebraic equations yields
P11 = 2!s

1/4
!n

3/4

P22 = 2!s

3/4
!n

1/4

P12 = !s

1/2
!n

1/2

Since
K = P H

T
R
-1

The gains become

K1 = 
P11

!n

 = 2
!s

!n

1/4

K2 = 
P12

!n

 = 
!s

!n

1/2
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Steady-State Gain Formula is Accurate for First
Gain in Continuous First-Order Polynomial Kalman

Filter

K1 =  2
!s

!n
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Steady-State Gain Formula is Accurate for Second
Gain in Continuous First-Order Polynomial Kalman

Filter

K2 =  
!s

!n
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Steady-State Formula for First Diagonal Element of
Covariance Matrix is Accurate for Continuous First-

Order Polynomial Kalman Filter

P11 = 2!s
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Steady-State Formula for Second Diagonal Element
of Covariance Matrix is Accurate for Continuous

First-Order Polynomial Kalman Filter

P22 = 2!s
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Deriving Transfer Function For First-Order
Polynomial Kalman Filter

Recall continuous Kalman filter formula
x = F x + K (z - H x)

Substitution yields

Convert to Laplace transform notation

After some manipulations we get

Defining a natural frequency

We can rewrite filter transfer function as

x = x + K1(x* - x)

x = K2(x* - x)

sx = x + K1(x*-x)

sx = K2(x* - x)

x

x*
 = 

K2 + K1s

s2 + K2 + K1s

!0 = 
"s

"n

1/4
K1 = 

P11

!n

 = 2
!s

!n

1/4

 = 2"0

K2 = 
P12

!n

 = 
!s

!n

1/2

 = "0

2

x

x*
 = 

1 + 2s

!0

1 + 2s

!0

 + s2

!
0

2

F = 
0 1

0 0

H = 1 0

K1 = 2
!s

!n

1/4

K2 = 
!s

!n

1/2
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Filter Natural Frequency Increases as the Ratio of
the Process to Measurement Noise Spectral

Densities Increases
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Gain Formula For Second-Order Filter-1

From steady-state Riccati equation

Recall regular Riccati equation

P = -PHTR-1HP + P FT + FP + Q

Using symmetry we get six scalar equations with six unknowns

P11 P12 P13

P12 P22 P23

P13 P23 P33

 = - 

P11 P12 P13

P12 P22 P23

P13 P23 P33

 

1

0

0

 !n

-1
 1 0 0  

P11 P12 P13

P12 P22 P23

P13 P23 P33

 + 

P11 P12 P13

P12 P22 P23

P13 P23 P33

 

0 0 0

1 0 0

0 1 0

 + 

0 1 0

0 0 1

0 0 0

 

P11 P12 P13

P12 P22 P23

P13 P23 P33

 + 

0 0 0

0 0 0

0 0 !s

 = 0

P
11

2
 = 2P12!n

P
12

2
 = 2P23!n

P
13

2
 = !s!n

P11P12 = !n(P22 + P13)

P11P13 = P23!n

P12P13 = P33!n

Matrix symmetric
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Gain Formula For Second-Order Filter-2

Solving the algebraic equations yields

Since
K = P H

T
R
-1

The gains become

P11 = 2!s

1/6
!n

5/6

P12 = 2!s

1/3
!n

2/3

P13 = !s

1/2
!n
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P22 = 3!s

1/2
!n

1/2

P23 = 2!s

2/3
!n

1/3

P33 = 2!s

5/6
!n

1/6

K1 = 
P11

!n

 = 2
!s

!n

1/6

K2 = 
P12

!n

 = 2
!s

!n

1/3

K3 = 
P13
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!n
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Steady-State Gain Formula is Accurate for First
Gain in Continuous Second-Order Polynomial

Kalman Filter
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Steady-State Gain Formula is Accurate for Second
Gain in Continuous Second-Order Polynomial

Kalman Filter
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Steady-State Gain Formula is Accurate for Third
Gain in Continuous Second-Order Polynomial

Kalman Filter
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Deriving Transfer Function For Second-Order
Polynomial Kalman Filter

Recall continuous Kalman filter formula
x = F x + K (z - H x)

Substitution yields

Convert to Laplace transform notation

After some manipulations we get

Defining a natural frequency

We can rewrite filter transfer function as

x = x + K1(x* - x)

x = x + K2(x* - x)
x = K3(x* - x)

sx = x + K1(x*-x)

sx = x + K2(x* - x)

sx = K3(x*-x)

x

x*
 = 

K3 + sK2 + s2K1

K3 + sK2 + s2K1 + s3

!0 = 
"s

"n

1/6

K1 = 
P11

!n

 = 2
!s

!n
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 = 2"0

K2 = 
P12

!n

 = 2
!s
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 = 2"0

2
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P13
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 = 
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 = "0

3
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 = 

1 + 2s
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 + 2s2
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Second-Order Kalman Filter Natural Frequency
Increases With Increasing Ratio of Process to

Measurement Noise Spectral Density
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Transfer Functions and Magnitudes for Different
Order Polynomial Kalman Filters

Name Laplace Transform Magnitude

Zeroth-Order x

x*
 = 1

1 + s

!0

x

x*
 = 1

1 + !

!0

2

First-Order x

x*
 = 

1 + 2s

!0

1 + 2s

!0

 + s2

!0
2

x

x*
 =  

1 + 
2!

!0

2

1 - !
2

!0

2

2

 + 2!

!0

2
 

Second-Order x

x*
 = 

1 + 2s

!0

 + 2s2

!0

2

1 + 2s

!0

 + 2s2

!0

2
 + s

3

!0

3

x

x*
 = 

1 - 2!
2

!0

2

2

 + 2!

!0

2
 

1 - 2!
2

!0

2

2

 + 2!

!0

  - !
3

!0

3

2
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FORTRAN Program to Calculate Magnitudes of
Kalman Filter Transfer Functions

IMPLICIT REAL*8 (A-H)
IMPLICIT REAL*8 (O-Z)
OPEN(1,STATUS='UNKNOWN',FILE='DATFIL')
W0=10.
DO 10 W=1.,100.
XMAG1=1./SQRT(1.+(W/W0)**2)
TOP1=1.+2.*(W/W0)**2
BOT1=(1.-(W*W/(W0*W0)))**2+2.*(W/W0)**2
XMAG2=SQRT(TOP1/(BOT1+.00001))
TOP2=(1.-2.*W*W/(W0*W0))**2+(2.*W/W0)**2
TEMP1=(1.-2.*W*W/(W0*W0))**2
TEMP2=(2.*W/W0-(W/W0)**3)**2
XMAG3=SQRT(TOP2/(TEMP1+TEMP2+.00001))
WRITE(9,*)W,XMAG1,XMAG2,XMAG3
WRITE(1,*)W,XMAG1,XMAG2,XMAG3

 10 CONTINUE
 CLOSE(1)

PAUSE
END

Zeroth-order filter
First-order filter

Second-order filter
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Higher-Order Filters Have Less Attenuation After
Filter Natural Frequency
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Increasing Filter Natural Frequency Increases Filter
Bandwidth
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Continuous Polynomial Kalman Filter
Summary

•   Continuous Kalman filtering equations useful for understanding the
properties of the discrete filter
•   Relationship between continuous and discrete Kalman gains and
covariances established
•   Formulas for steady-state Kalman gains and covariances derived
•   Transfer functions for zeroth, first and second-order polynomial
Kalman filters derived
•   Bandwidth of polynomial Kalman filter shown to be proportional to
ratio of process to measurement noise spectral densities


