Set-point Regulation of an Uncertain 6-DOF Magnetically Levitated Positioning Stage

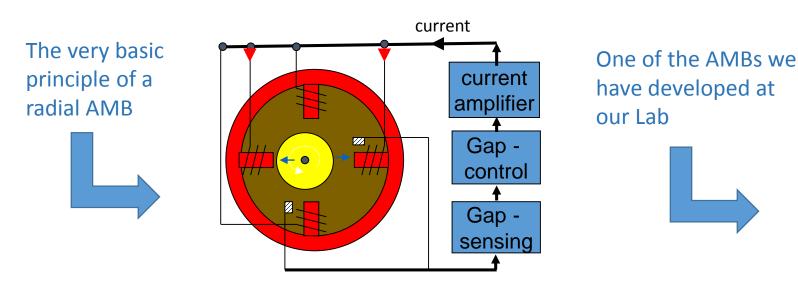
Shai Arogeti

Department of Mechanical Engineering Ben-Gurion University of the Negev

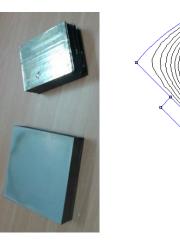
Outline

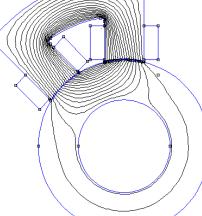
- Background some of our activities in the field of AMB
- Six-DOF Precision Positioning Stage (mechanical structure and dynamical model)
- Iterative Output Control Law (theoretical)
- Iterative Output Control Law (practical)
- Experimental Results
- Summary and Conclusions

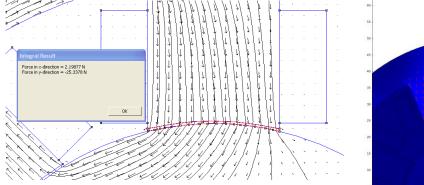
- Active Magnetic Bearings (AMB) allows rotation with no friction.
- It uses electromagnetic forces to prevent mechanical contact between the static (stator) and the moving (rotor) parts.
- Applications of AMBs include very high rotating systems, such as turbomolecular pumps and Flywheel Energy Storage Systems.

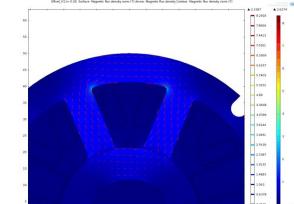


The design includes magnetic and mechanical analysis (using finite elements software)





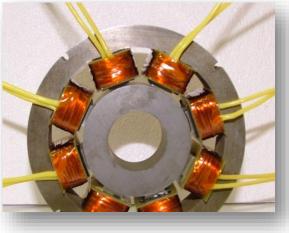


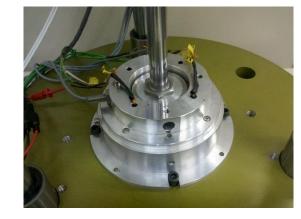


Our interests includes:

- Optimal design for minimum losses
- Adaptive control (unknown imbalance)
- AMB control, the case of elastic shaft.

Our AMBs are produced (**in-house**) from raw materials (e.g., of electrical transformers)





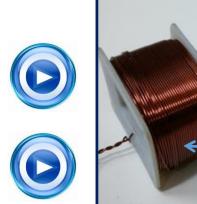
A 5 DOF AMB system at our Lab, it includes:

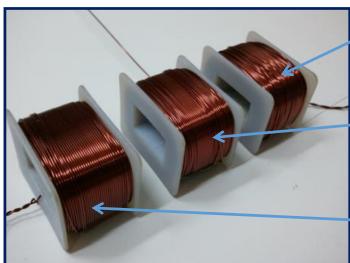
- Two radial AMBs
- One axial AMB (works against gravity)
- High speed brushless motor (up to 60,000 RPM)

Many in-house skills have been acquired

Besides AMBs design and control we have developed a winding machine at our Lab.

- The wire tension is closed-loop controlled.
- Very slow winding allows maximum number of windings in a given volume.
- The bobbins (spools) are 3-D printed. •



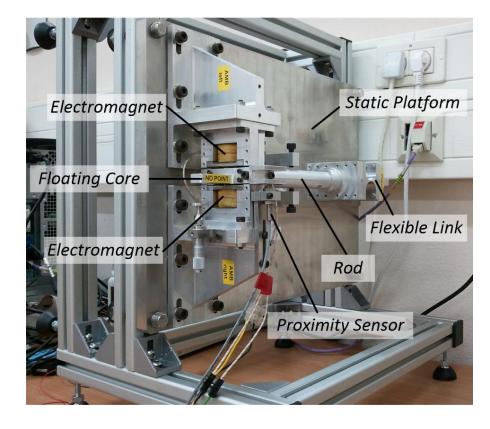


Industrial Machine Prod. Time (?)

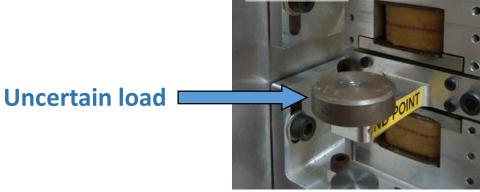
Designed Machine Prod. Time: ~15min

Designed Machine Prod. Time: ~50min

A single degree of freedom "AMB" (imbalance effects can be added by a small rotating eccentric mass)

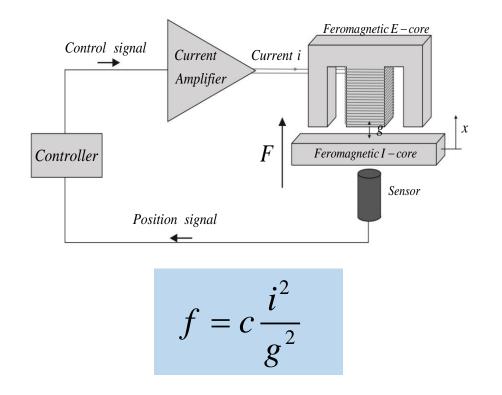


This system can be placed vertically or horizontally (depending on the gravity effect we want to achieve)



m=0.66kg

The simplest model of the electromagnetic force (commonly utilized for control design)



Systems consist of these actuators are **unstable**

A single DOF electro-magnetic actuator includes two E cores and a single I core. Force can be applied in both directions (usually by linearizing the system around a bias current)

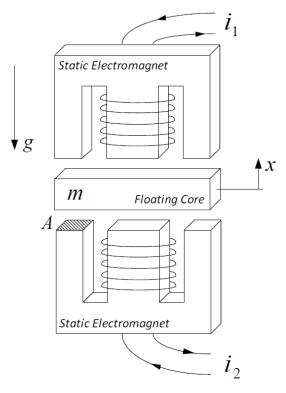


Fig. 1: SDOF AMB positioning system scheme

One very talented **MSc student**: Sergei Basovich

6 DOF magnetically levitated positioning stage

All of this brings us to the subject of this talk:

Set-point Regulation of an Uncertain 6-DOF Magnetically Levitated Positioning Stage

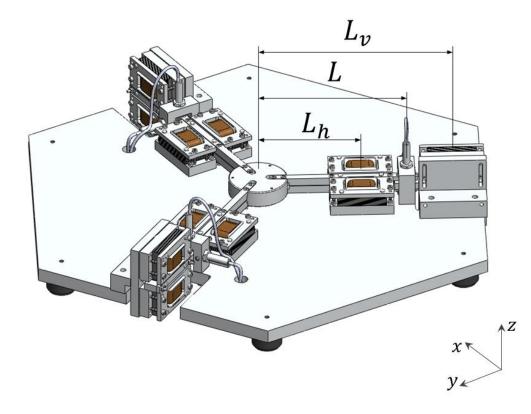
Shai Arogeti

Department of Mechanical Engineering Ben-Gurion University of the Negev

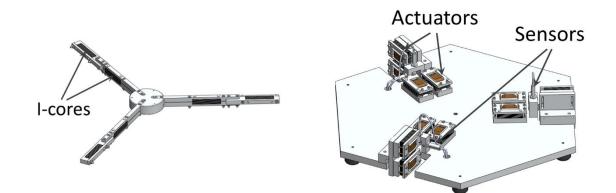
So, I could have started here, but . . .

Stage Structure

The stage consists of six electromagnetic actuators (Three are vertical and the other are horizontal)



The levitated-part consists of three arms connected in a joint, where each arm serves as a support for two I-cores.



The air gaps in all six actuators are measured by six proximity (eddy current) sensors to obtain information about the stage position and orientation.

The traveling range is $\pm 450 \times 10^{-6} [m] \pm 1500 \times 10^{-6} [rad]$

Stage Structure

The mechanical data of the stage is . . . (products of inertia are negligible)

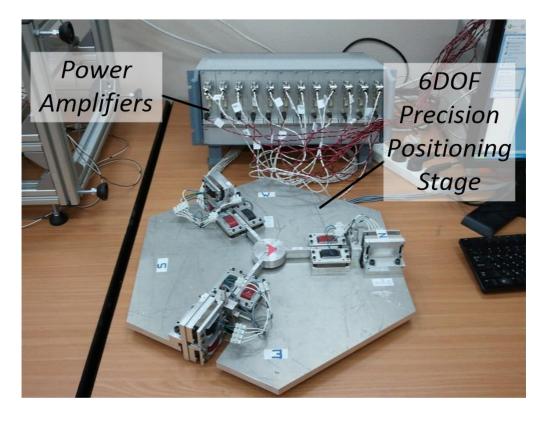


TABLE I: Stage Parameters

$I[kgm^2]$ - inertia of the platen			
I_{xx}	I_{yy}	I_{zz}	
5.4336e-3	5.4336e-3	1.0844e-2	
I_{xy}	I_{yz}	I_{zx}	
2.5717e-17	9.1320e-22	1.1316e-21	
Platen nominal mass	Electromagnetic coef.	Nominal air gap	
m[kg]	$c[Nm^2/A^2]$	$l_0[m]$	
0.648	1.0809e-5	450e-6	
Relevant dimensions [m]			
L_h	L	L_v	
0.113	0.163	0.213	

The stage (levitated part) is modeled as a rigid body with 6 DOF

$$M \ddot{q} + C(\dot{q})\dot{q} + w + \zeta = \Phi_{LF} \cdot f \qquad , \label{eq:mass_states}$$

$$q = [x, y, z, \varphi, \theta, \psi]^T$$

(small angles and small displacements are assumed)

	The inertia matrix is	$M = diag\left\{m_t, m_t, m_t, I_{xx}, I_{yy}, I_{zz}\right\}$
	The actuator forces	$f = [f_1, f_2, f_3, f_4, f_5, f_6]^T$
Assumed	The gravity force	$w = [0, 0, m_t g, 0, 0, 0]^T$
unknown	Torque due to a shifted c.g. $\zeta = [0_{1\times 3}, -\Delta \tau^T]^T$ (because of the payload)	

Transformation from actuator forces to body forces

$$\Phi_{LF} = \begin{bmatrix} Y & P \\ L_h P & -L_v Y \end{bmatrix} \quad \text{where} \quad Y = \begin{bmatrix} \sqrt{3/2} & 0 & -\sqrt{3/2} \\ -1/2 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix} , \quad P = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Transformation from body coordinates to actuator coordinates

$$l = \Phi_{LQ} q \qquad \text{where} \qquad \Phi_{LQ} = \begin{bmatrix} Y^T & L_h P^T \\ P^T & -L_v Y^T \end{bmatrix} = \Phi_{LF}^T$$

Transformation from sensor coordinates to body coordinates

$$q = \Phi_{QS} s \qquad \text{where} \qquad \Phi_{QS}^{-1} = \begin{bmatrix} -Y^T & -LP^T \\ -P & LY^T \end{bmatrix}$$

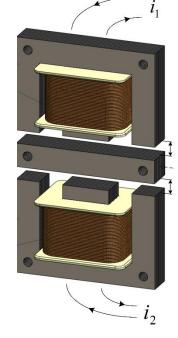
The actuator forces $f_k = c \left(\frac{i_{k1}^2}{\left(l_0 + l_f - l_k(q)\right)^2} - \frac{i_{k2}^2}{\left(l_0 + l_f + l_k(q)\right)^2} \right)$, k = 1, 2, 3, 4, 5, 6

 l_f represents an additional length due to final permeability

Then, control currents (i_{k1} and i_{k2}) are applied based on:

$$\begin{split} i_{k1} &= \begin{cases} \left(l_0 + l_f - l_k(q) \right) \sqrt{f_k / c}, & f_k > 0 \\ 0 & otherwise \end{cases} \\ i_{k2} &= \begin{cases} \left(l_0 + l_f + l_k(q) \right) \sqrt{-f_k / c}, & f_k < 0 \\ 0 & otherwise \end{cases}, \ k = 1, 2, 3, 4, 5, 6 \end{cases} \end{split}$$

$$\kappa = 1, 2, 3, 4, 3, 0$$



 $l_0 = 450 \times 10^{-6} [m]$ $l_f = 1.8634 \times 10^{-6} [m]$

The matrix $C(\dot{q})$ of the term $C(\dot{q})\dot{q}$ is given as,

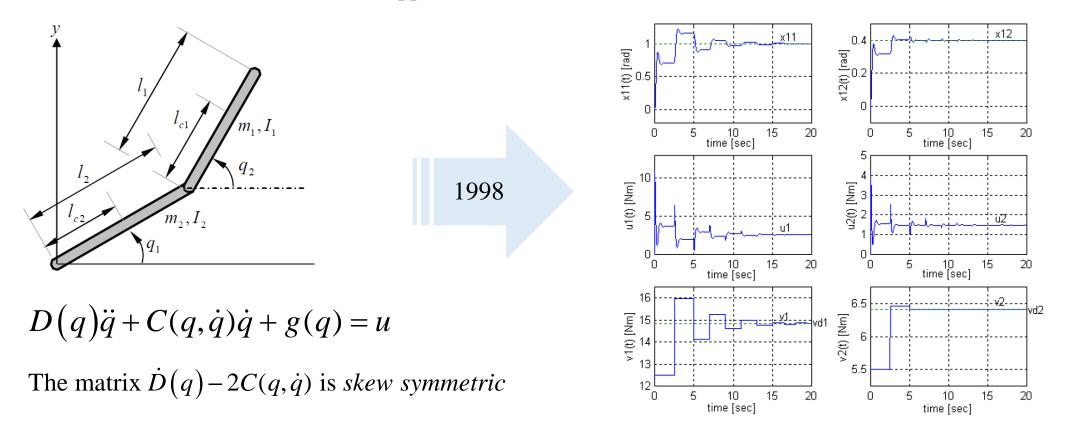
$$C = \begin{bmatrix} 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & C_0 \end{bmatrix} \quad \text{Where,} \quad C_0 = \begin{bmatrix} 0 & I_{zz}\dot{\psi} & -I_{yy}\dot{\theta} \\ -I_{zz}\dot{\psi} & 0 & I_{xx}\dot{\phi} \\ I_{yy}\dot{\theta} & -I_{xx}\dot{\phi} & 0 \end{bmatrix}$$

It is important to note that the matrix $\dot{M} - 2C(\dot{q})$ is a skew symmetric matrix

Iterative Output Control Law

Some old results from robotics

A. Ailon, "**Output controller based on iterative schemes for set-point regulation of uncertain flexible-joint robot models**," *Automatica*, vol. 32, no. 10, pp. 1455-1461, 1996.



Iterative Output Control Law (Six-DOF Positioning Stage)

We define the uncertain term as $p \triangleq w + \zeta$

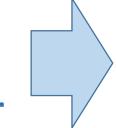
The state space representation,

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = M^{-1}(-C(x_{2})x_{2} - p + \Phi_{LF} \cdot f)$$

where, $x_{1} = q$, $x_{2} = \dot{q}$

For the 6DOF stage, we propose the following **iterative controller-observer**



$$f = \Phi_{LF}^{-1} \left(-C_1 (x_1 - x_1^d) - C_2 \dot{z} + v \right)$$
$$\dot{z} = -K(z - x_1)$$

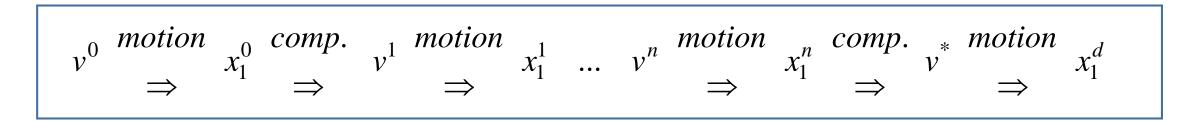
 C_1, C_2, K positive definite & diagonal

The compensating piecewise function v (constant at each iteration) is defined by the following update law

$$v^{n+1} = v^n - S\left(x_1^n - x_1^d\right)$$

Where,
$$S \triangleq C_1(I - \alpha I)$$
, $0 < \alpha < \frac{1}{2}$

This can be schematically represented by the following process



Lemma 1 Let the system with the uncertain term $p \in \mathcal{R}^6$ be controlled by the controller-observer with an arbitrary $v \in \mathcal{R}^6$. Then, the equilibrium point $x_1 = \overline{x}_1$ of the closed loop system is asymptotically stable.

Proof Define a scalar function $H(x_1, x_2, z)$ as, $H(x_1, x_2, z) = \frac{1}{2} [x_2^T M x_2 + (x_1 - z)^T C_2 K(x_1 - z) + (x_1 - x_1^d - C_1^{-1} v)^T C_1 (x_1 - x_1^d - C_1^{-1} v)] + U_p(x_1)$ where $U_p(x_1)$ satisfies $dU_p(x_1)/dx_1 = p$. Evaluating $\frac{dH(x_1, 0, z)}{dx_r} = 0$ where $x_r = [x_1^T, z^T]^T$, yields the steady state equations of the closed loop. $p + C_1(x_1 - x_1^d) + C_2 K(x_1 - z) - v = 0$ $-C_2 K(x_1 - z) = 0$

Proof (cont.)

Evaluating the Hessian (
$$d^2 H(x_1, 0, z) / d^2 x_r$$
) we obtain, $\begin{bmatrix} C_1 + C_2 K & -C_2 K \\ -C_2 K & C_2 K \end{bmatrix}$

which can be shown to be positive definite for $C_1, C_2, K > 0$.

Therefore the scalar function $H(x_1, x_2, z)$ is a convex function and it has a global minimum at $\overline{x}_r = [\overline{x}_1^T, \overline{z}^T]^T$ for a given constant vector v

Thus, a Lyapunov candidate function can be defined as $V = H(x_1, x_2, z) - H(\overline{x}_1, 0, \overline{z})$

and its time derivative is $\dot{V} = -C_2 K \dot{z}^2 \le 0$

Hence, invoking the LaSalle's invariance principle, asymptotic stability of the equilibrium point $\bar{x}_r = [\bar{x}_1^T, \bar{z}^T]^T$ is concluded.

Lemma 2 Consider the stage model and define the map $T(v): \mathcal{R}^6 \to \mathcal{R}^6$ as,

$$T(v) = v - S\left(x_1 - x_1^d\right)$$

Then, the map T(v) is a global contraction, i.e., there exists exactly one v^* such that.

 $T(v^*) = v^*$

Proof

For a given couple of vectors v^1 and v^2 (of the series $\{v^n\}$ generated by T(v))

$$T(v^{1}) - T(v^{2}) = v^{1} - v^{2} - C_{1}(I - \alpha I)(x_{1}^{1} - x_{1}^{2})$$

From the equilibrium equations, it follows that $x_1^1 - x_1^2 = C_1^{-1}(v^1 - v^2)$

Since C_1 is diagonal, we have (from the last two equations) $||T(v^1) - T(v^2)|| = \alpha ||v^1 - v^2||$

Hence, the map T(v) is contraction, with $T(v^*) = v^*$, and $\left\|v^* - v^n\right\| \leq \frac{\alpha^n}{1 - \alpha} \left\|T(v^0) - v^0\right\|$

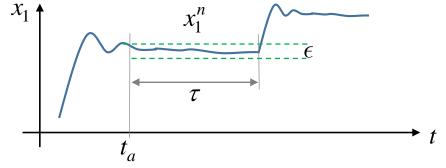
- Since the convergence of the closed-loop system to the desired setpoint x_1^d involves an infinite time process, this algorithm is **impractical**.
- For a real control task, the controller should be used with a decision module that (within a single iteration) concludes convergence to a sufficiently close vicinity of the intermediate equilibrium point.
- As a result, due to the differences between the theoretical and practical intermediate equilibrium points, the last term of the practical process will slightly deviate from the desired set point x₁^d.
- How close to x_1^d can we get ? Lets put this in a mathematical framework

Assumption

For a particular control task, positive constants ϵ and τ can be selected in such a way that from satisfaction of

$$||x_1^n(t) - x_1^n(t_a)|| \le \epsilon, \quad \forall t \in [t_a, t_a + \tau], t_a \ge 0$$

during the n-th iteration, it can be concluded that



$$\|\varphi_{v}(t) - \overline{\varphi}_{v}(v)\| \leq \zeta(\epsilon), \quad \forall t \in [t_{a}, \infty)$$

where $\varphi_v(t) = [x_1(t)^T, x_2(t)^T, z(t)^T]^T$ is the system trajectory,

 $\overline{\varphi}_{v}(v) = [x_{1}^{nT}, 0, z_{1}^{nT}]^{T}$ is the *n*-th equilibrium point,

and $\zeta(\epsilon)$ is a constant (corresponding to a chosen ϵ)

Practically, we are not using the map $T(v) = v - S(x_1 - x_1^d)$

hence, we define the practical map $E(v): \mathcal{R}^6 \to \mathcal{R}^6$

$$E(v) = v - S\left(x_1 + \Delta(v) - x_1^d\right)$$

where the error term $\Delta(v)$ satisfies

$$\|\Delta(v)\| \le \epsilon, \forall v \in \mathcal{R}^6$$

and we use following lemma.

Lemma 3 Consider the map E(v). Then, for any pair of vectors $\{v^1, v^2\}$ satisfying

$$\left\|v^{1}-v^{2}\right\| \geq \theta \triangleq \frac{2\lambda_{max}(S)\epsilon}{\alpha}$$

the following holds

$$\left\| E\left(v^{1}\right) - E\left(v^{2}\right) \right\| \leq 2\alpha \left\| v^{1} - v^{2} \right\|$$

Proof

Expanding
$$E(v^1) - E(v^2)$$
 we obtain

$$E(v^{1}) - E(v^{2}) = T(v^{1}) - T(v^{2}) + S\Delta(v^{2}) - S\Delta(v^{1})$$

and
$$\left\| E\left(v^{1}\right) - E\left(v^{2}\right) \right\| = \left\| T\left(v^{1}\right) - T\left(v^{2}\right) + S\Delta\left(v^{2}\right) - S\Delta\left(v^{1}\right) \right\|$$

Proof (cont.)

For the right-hand side of the last equation, by the triangle inequality, we have

$$\left\| T\left(v^{1}\right) - T\left(v^{2}\right) + S\Delta\left(v^{2}\right) - S\Delta\left(v^{1}\right) \right\| \leq \left\| T\left(v^{1}\right) - T\left(v^{2}\right) \right\| + \left\| S\Delta\left(v^{2}\right) - S\Delta\left(v^{1}\right) \right\|$$

For the right-hand side of the last equation,

$$\left\|T\left(v^{1}\right)-T\left(v^{2}\right)\right\|+\left\|S\Delta\left(v^{2}\right)-S\Delta\left(v^{1}\right)\right\|\leq\alpha\left\|v^{1}-v^{2}\right\|+2\lambda_{max}(S)\epsilon^{2}$$

For the right-hand side of the last equation, using the Lemma condition,

$$\alpha \left\| v^1 - v^2 \right\| + 2\lambda_{max}(S)\epsilon \le 2\alpha \left\| v^1 - v^2 \right\|$$

So, as long as
$$\left\|v^1 - v^2\right\| \ge \theta \triangleq \frac{2\lambda_{max}(S)\epsilon}{\alpha}$$

We have,
$$||E(v^1) - E(v^2)|| \le 2\alpha ||v^1 - v^2||$$
, $0 < \alpha < \frac{1}{2}$

and the (practical) map E(v) can be considered contraction.

Now suppose that for the sequence $\{v^n\}$ generated by $v^{n+1} = E(v^n)$, n = 0, 1...there exists a minimal integer $m(v^0)$ for which $\left\|v^{m(v^0)-1} - v^{m(v^0)}\right\| < \theta$

The $m(v^0)$ -th iteration is the final iteration.

It is very important to be able to estimate the deviation from x_1^d after the final iteration

For that, we have **Lemma 4** and **Lemma 5** (in our paper), which are not presented here.

The final conclusion from these Lemmas is that,

$$||x_1^d - x_1^{m(v^0)}|| \le 3 \frac{\lambda_{max}(C_1)}{\lambda_{min}(C_1)} \epsilon$$

The upper bound of the steady state error norm (after the last iteration) can be made as small as desired.

- The **traveling range** of the proposed positioning stage **is relatively** restricted.
- If not all the terms of the practical intermediate equilibrium point sequence are found inside the operational area, the **steady state** equations are no longer valid.
- Hence, another important practical aspect is the **boundedness** of the intermediate steady state response.
- To provide that, we introduce the **initialization phase** which augments the iterative process.

The augmented iterative process is represented as,

where, $\chi_1^n \triangleq x_1^n + \Delta(v^n)$ is the *n*-th term of the series of *practical equilibrium points* generated during the practical process.

- The initialization phase represents the response of the system with $x_1^d = 0$ and v = 0.
- As a result of the initialization, the system will move to χ_1^i .
- The initialization phase assures that the update mechanism starts acting when χ_1^i is found inside the traveling range of the stage.
- The initial input v^0 is determined by $v^0 = -S(\chi_1^i x_1^d)$

and for the rest of the process we use $v^{n+1} = v^n - S(\chi_1^n - \chi_1^d)$

Lemma 6 Consider the system with $x_1^d = 0$ and v = 0, and let δ^i be the air-gap vector corresponding to the practical equilibrium point χ_1^i . Then, for C_1 satisfying

$$\left\| \Phi_{LQ} C_1^{-1} \right\|_2 \cdot \beta < l_0 - \left\| \Phi_{LQ} \right\|_2 \cdot \epsilon \qquad (*)$$

where the scalar l_0 represents the nominal air gap value in each actuator and β is the upper bound of P, the following holds,

$$\left\|\delta^{i}\right\| < l_{0}$$

Lemma 7 Consider the system with the practical update law. Let δ^n and l^d be the air-gap vectors, corresponding to χ_1^n and x_1^d respectively. Then, for C_1 satisfying (*) and for, $v^0 = -S(\chi_1^i + \chi_1^d)$

the following holds,

 $|\delta_k^n| < l_0, \quad k = 1, 2, 3, 4, 5, 6$

Assumptions required for the proofs of **Lemma 6** and **Lemma 7** (can be found in our paper),

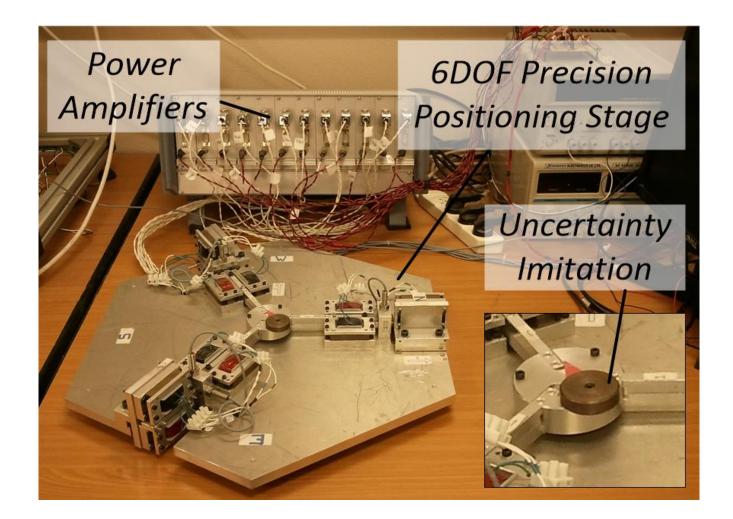
- For the uncertain term p, a positive constant $\beta \triangleq \sup \|p\|$ exists and it is known.
- The constants ϵ and α can be selected such that $\epsilon < \frac{1-2\alpha}{2 \cdot \left\| \Phi_{LQ} \right\|_2} l^0$
- All the component of the air gap vector l^d , corresponding to the desired set-point vector x_1^d , satisfies

$$|l_k^d| < l_0 - \frac{2}{1-\alpha} \left\| \Phi_{LQ} \right\|_2 \cdot \epsilon, \quad k = 1, 2, 3, 4, 5, 6$$

The presented algorithm was verified experimentally.

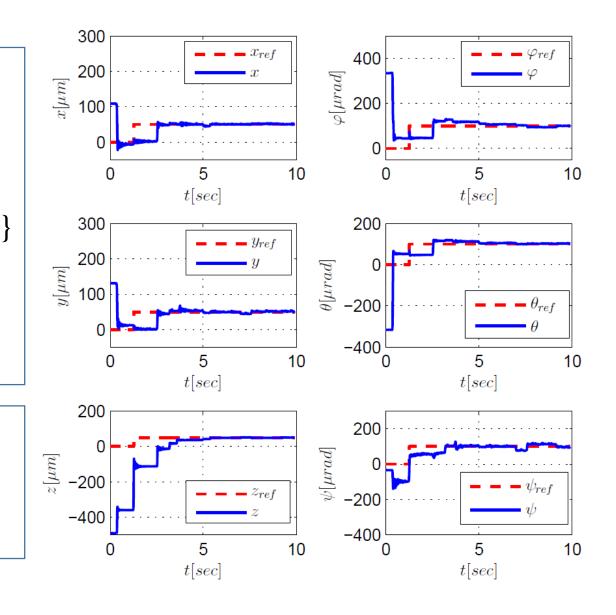
To imitate the uncertainty we attached a steel payload of m = 0.07 kg to the stage platen.

besides the additional negative force (w.r.t., z), it causes uncertain torques (w.r.t., x and y).



To implement the controller we selected, $C_{1} =$ 1000 · *diag* {32.5, 32.5, 32.5, 16.8, 16.8, 16.8} $C_2 = diag\{25, 25, 31, 11.5, 11.5, 7.3\}$ $\alpha = 0.1, \quad \epsilon = 1 \times 10^{-6}, \quad \tau = 0.2$

while the required set point $x_1^d = 1 \times 10^{-6} \{50, 50, 50, 100, 100, 100\}^T$

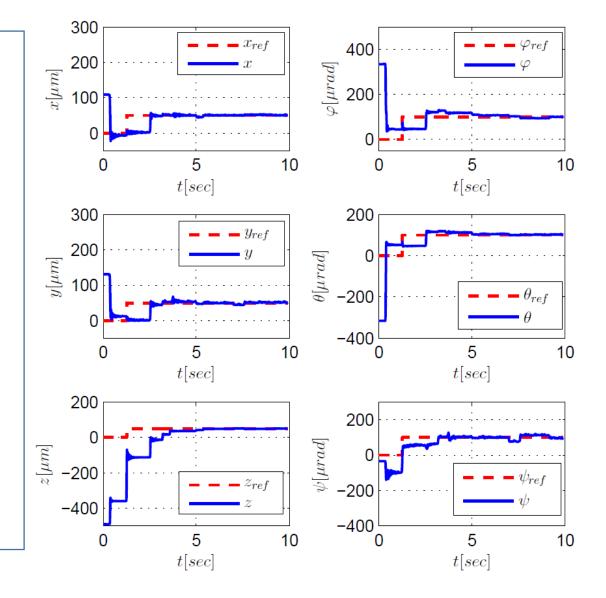


All required assumptions for the initialization phase have verified.

At the time slot 0 < t < 0.35 the system stays at initial conditions.

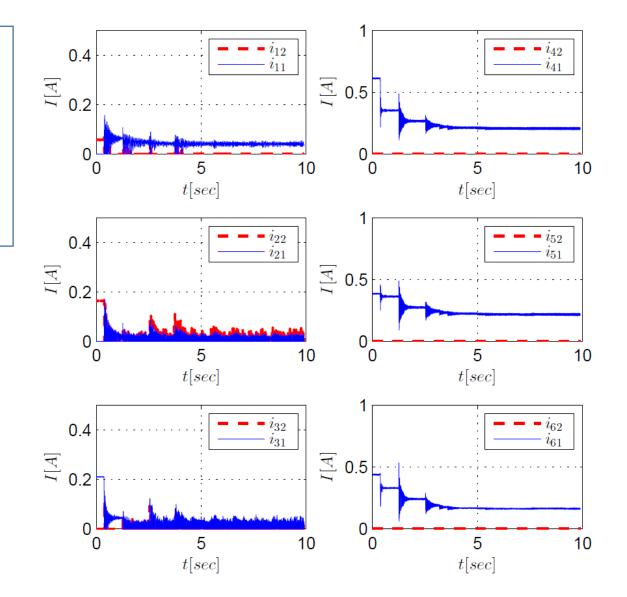
At the time slot 0.35 < t < 1.26 it undergoes the initialization phase.

At the time section 1.26 < t < 2.53the system responses to v^0 and x_1^d .



These are the control currents.

For the vertical actuators, only the upper coils were activated.

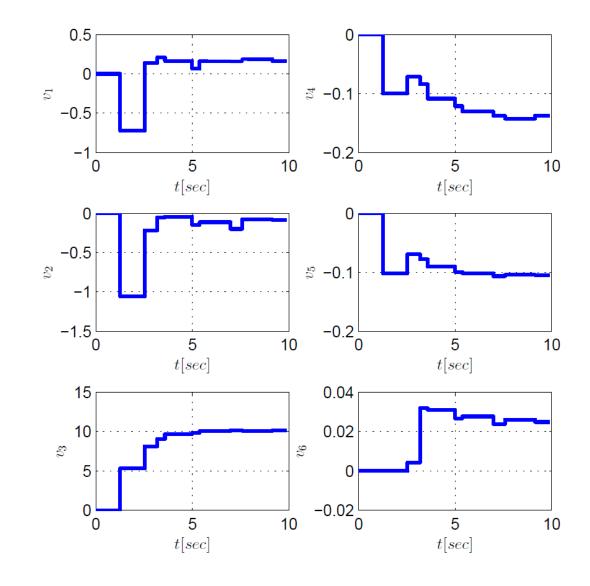


For the attached payload the uncertain vector p is estimated as, $p = \{0, 0, 7.044, -0.019, -0.011, 0\}^T$

For this *p* , we have defined $\beta = 7.1$

In equilibrium condition, for $x_1 = x_1^d$, we suppose to have v = p

We understand that, v here is compensating for uncertainties that are not considered in the model



Summary and Conclusions

- A brief introduction to our activities in the field of AMB has been presented.
- A 6-DOF precision positioning stage, based purely on magnetic levitation principles (developed at our Lab) was presented
- Some old results from robotics have been modified to suit the case of magnetic levitation application (to the set point goal).
- An unknown payload was assumed (and hence, an unknown c.g.)
- The results were demonstrated experimentally.
- The proposed algorithm can be used as an identification routine, allowing realization of a simple controller (that is not based on iterations).