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Background – some of our activities in the field of AMB
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• Active Magnetic Bearings (AMB) allows rotation with no friction.

• It uses electromagnetic forces to prevent mechanical contact between the 
static (stator) and the moving (rotor) parts.

• Applications of AMBs include very high rotating systems, such as turbo-
molecular pumps and Flywheel Energy Storage Systems.

The very basic 
principle of a 
radial AMB

One of the AMBs we 
have developed at 
our Lab



Background – some of our activities in the field of AMB

The design includes magnetic and mechanical analysis (using finite elements software)  

Our interests includes: 
• Optimal design for minimum losses
• Adaptive control (unknown imbalance)
• AMB control, the case of elastic shaft.

Our AMBs are produced (in-house) from 
raw materials 
(e.g., of electrical transformers)  



Background – some of our activities in the field of AMB

A 5 DOF AMB system at our Lab, it includes:
• Two radial AMBs
• One axial AMB (works against gravity)
• High speed brushless motor (up to 60,000 RPM)



Industrial Machine
Prod. Time (?)

Designed Machine
Prod. Time: ~15min

Designed Machine
Prod. Time: ~50min

Many in-house skills have been acquired
Besides AMBs design and control we have developed 
a winding machine at our Lab. 
• The wire tension is closed-loop controlled.
• Very slow winding allows maximum number of 

windings in a given volume.
• The bobbins (spools) are 3-D printed.

Background – some of our activities in the field of AMB

Raw materials/Winding Mashine Clip.mp4
Raw materials/Winding Mashine Clip.mp4
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Raw materials/CIMG4094.AVI


This system can be placed vertically or 
horizontally (depending on the gravity 
effect we want to achieve) 

A single degree of freedom “AMB” (imbalance effects can be added by a small 
rotating eccentric mass)

Background – some of our activities in the field of AMB

Uncertain load
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Background – some of our activities in the field of AMB

The simplest model of the electromagnetic 
force (commonly utilized for control design)

A single DOF electro-magnetic actuator includes 
two E cores and a single I core.
Force can be applied in both directions (usually by 
linearizing the system around a bias current)

Systems consist of these actuators are unstable
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6 DOF magnetically 
levitated positioning stage

Background – some of our activities in the field of AMB
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All of this brings us to the subject of this talk:

So, I could have started here, but . . . 

Set-point Regulation of an Uncertain 6-DOF 
Magnetically Levitated Positioning Stage



Stage Structure

The stage consists of six electromagnetic actuators (Three are vertical and the other 
are horizontal)

The levitated-part consists of three arms connected in a 
joint, where each arm serves as a support for two I-cores. 

The air gaps in all six actuators are measured by six proximity 
(eddy current) sensors to obtain information about the stage 
position and orientation.

The traveling range is 6450 10 [ ]m  61500 10 [ ]rad 



Stage Structure

The mechanical data of the stage is . . .

(products of inertia are negligible)
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Stage Equations of Motion

The stage (levitated part) is modeled as a rigid body with 6 DOF 

(small angles and small displacements are assumed) 

1 2 3 4 5 6[ , , , , , ]Tf f f f f f f

1 3[0 , ]T T  

 , , , , ,t t t xx yy zzM diag m m m I I IThe inertia matrix is

The actuator forces

The gravity force

Torque due to a shifted c.g.
(because of the payload)

Assumed
unknown 



Stage Equations of Motion

Transformation from actuator forces to body forces
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Transformation from body coordinates to actuator coordinates 
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The actuator forces 
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Then, control currents (      and      ) are applied based on:1ki 2ki

represents an additional length due to final permeabilityfl
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Stage Equations of Motion

The matrix           of the term             is given as,
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Iterative Output Control Law

Some old results from robotics

  ( , ) ( )D q q C q q q g q u  

 The matrix 2 ( , ) is  D q C q q skew symmetric

A. Ailon, “Output controller based on iterative schemes for set-point

regulation of uncertain flexible-joint robot models,” Automatica, vol. 32,

no. 10, pp. 1455-1461, 1996.

1998



Iterative Output Control Law (Six-DOF Positioning Stage)

p w We define the uncertain term as

The state space representation, 1 2

1
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where, 1 2,x q x q 

For the 6DOF stage,
we propose the following 
iterative controller-observer
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1 2, ,C C K positive definite & diagonal



 1
1 1
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The compensating piecewise function  (constant at each iteration) 
is defined by the following update law

v
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1
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2
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0 0 1 1 *
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. .
... n n dmotion comp motion motion comp motion
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This can be schematically represented by the following process

Iterative Output Control Law (theoretical)



1 1 1 2 1( ) ( ) 0dp C x x C K x z v     

Lemma 1 Let the system with the uncertain term                 be controlled by the controller-observer 
with an arbitrary .  Then, the equilibrium point of the closed loop system 
is asymptotically stable.

6p
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Evaluating                                   where                            , 1( ,0,
0

)

r

dH x z

d x
 1[ , ]T T T

rx x z yields the steady state equations of 
the closed loop.

2 1( ) 0C K x z  

Iterative Output Control Law (theoretical)



Iterative Output Control Law (theoretical)

Proof (cont.)

Evaluating the Hessian (                                     ) we obtain,2 2
1( ,0, ) / rd H x z d x 1 2 2

2 2
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C K C K

  
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which can be shown to be positive definite for                         .                1 2, , 0C C K 

Therefore the scalar function is a convex function and it has a global 
minimum at                           for a given constant vector

1 2( , , )H x x z

1[ , ]T T T
rx x z v

Thus, a Lyapunov candidate function can be defined as
1 2 1( , , ) ( ,0, )V H x x z H x z 

and its time derivative is 2
2 0V C K z  

Hence, invoking the LaSalle's invariance principle, asymptotic stability of the equilibrium
point is concluded.

1[ , ]T T T
rx x z



Iterative Output Control Law (theoretical)

Lemma 2 Consider the stage model and define the map as,

 1 1( ) dT v v S x x  
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Iterative Output Control Law (practical)

• Since the convergence of the closed-loop system to the desired set-
point involves an infinite time process, this algorithm is  impractical. 

• For a real control task, the controller should be used with a decision 
module that (within a single iteration) concludes convergence to a 
sufficiently close vicinity of the intermediate equilibrium point.

1
dx

• As a result, due to the differences between the theoretical and 
practical intermediate equilibrium points, the last term of the practical 
process will slightly deviate from the desired set point  .1

dx

• How close to       can we get ?   Lets put this in a mathematical framework1
dx



Iterative Output Control Law (practical)

Assumption

For a particular control task, positive constants and      can be selected in such a way 
that from satisfaction of


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where                                                         is the system trajectory, 

|| ( ) ( ) || ( ), [ , )v v at v t t      

during the iteration, it can be concluded that -thn
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1 1( ) [ ,0, ]nT nT T
v v x z  is  the          equilibrium point,

and             is a constant (corresponding to a chosen    )

-thn

( )



Iterative Output Control Law (practical)

hence, we define the practical map   6 6:E v 

 1 1( ) ( ) dE v v S x v x    

where the error term satisfies

and we use following lemma.

6( ) ,v v   

( )v

Practically, we are not using the map  1 1( ) dT v v S x x  



Iterative Output Control Law (practical)

Lemma 3 Consider the map  . Then, for any pair of vectors satisfying( )E v
1 2{ , }v v

1 2 2 ( )max S
v v





 
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Iterative Output Control Law (practical)

For the right-hand side of the last equation, by the triangle inequality, we have

               1 2 2 1 1 2 2 1T v T v S v S v T v T v S v S v          

Proof (cont.)

For the right-hand side of the last equation,

       1 2 2 1 1 2 2 ( )maxT v T v S v S v v v S        

For the right-hand side of the last equation, using the Lemma condition,
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Iterative Output Control Law (practical)

and the (practical) map            can be considered contraction.            

So, as long as 1 2 2 ( )max S
v v





 

We have,    1 2 1 2 1
2 , 0

2
E v E v v v     

 E v

Now suppose that for the sequence generated by{ }nv
1 ( ), 0,1...n nv E v n  

there exists a minimal integer for which0( )m v
0 0( ) 1 ( )m v m vv v   

The                  iteration is the final iteration.0( )-thm v



Iterative Output Control Law (practical)

It is very important to be able to estimate the deviation from  after 
the final iteration

1
dx

For that, we have Lemma 4 and Lemma 5 (in our paper), which are not 
presented here. 

The final conclusion from these Lemmas is that, 

0( ) 1
1 1

1

( )
|| || 3

( )

d m v max

min

C
x x

C




 

The upper bound of the steady state error norm (after the last iteration) 
can be made as small as desired.



• Hence, another important practical aspect is the boundedness of 
the intermediate steady state response.

Iterative Output Control Law (practical)

• The traveling range of the proposed positioning stage is relatively 
restricted.

• If not all the terms of the practical intermediate equilibrium point 
sequence are found inside the operational area, the steady state 
equations are no longer valid. 

• To provide that, we introduce the initialization phase which 
augments the iterative process. 



Iterative Output Control Law (practical)

The augmented iterative process is represented as, 

1 1
10 0. .

, ...iinitial motion comp motion
v v 

   

0 0 0( ) 1 ( ) ( )
1 1

.
... m v m v m vcomp motion

v 

 

where, 1 1 ( )n n nx v   is the term of the series of practical 
equilibrium points generated during the 
practical process.

-thn



• The initial input       is determined by 

• The initialization phase assures that the update mechanism starts 
acting when is found inside the traveling range of the stage. 

• As a result of the initialization, the system will move to       .

Iterative Output Control Law (practical)

• The initialization phase represents the response of the system 
with             and           .

0v

1 0dx  0v 

1
i

1
i

 0
1 1
i dv S x  

and for the rest of the process we use  1
1 1

n dnnv v S x   



Iterative Output Control Law (practical)

Lemma 6 Consider the system with               and             , and let be the air-gap vector 
corresponding to the practical equilibrium point       . Then, for satisfying

1 0dx  0v  i

1
i

1C

1
1 0 22

( )LQ LQC l      

where the scalar represents the nominal air gap value in each actuator and  is 
the upper bound of     , the following holds,

0l 
p

0
i l 

Lemma 7 Consider the system with the practical update law. Let       and       be the air-gap 
vectors, corresponding to and        respectively. Then, for satisfying             
and for,

n
dl

1
n

1
dx 1C ( )

0
1 1( )i dv S x  

the following holds,

0| | , 1,2,3,4,5,6n
k l k  



Iterative Output Control Law (practical)

Assumptions required for the proofs of Lemma 6 and Lemma 7 (can 
be found in our paper),

• For the uncertain term     , a positive constant      p sup p

0

2

1 2

2 LQ

l



 

0 2

2
| | , 1,2,3,4,5,6

1

d
k LQl l k


    



exists and it is known.

• The constants and     can be selected such that

• All the component of the air gap vector     , corresponding to the 
desired set-point vector       , satisfies

dl

1
dx



Experimental Results

The presented algorithm was 
verified experimentally.

To imitate the uncertainty we 
attached a steel payload of

0.07 kgm  to the stage platen.

besides the additional 
negative force (w.r.t.,   ), it 
causes uncertain torques 
(w.r.t.,   and    ).

z

x y



Experimental Results

To implement the controller 
we selected,

1

1000 {32.5,32.5,32.5,16.8,16.8,16.8}

C

diag





6
1 1 10 {50,50,50,100,100,100}d Tx  

2 {25,25,31,11.5,11.5,7.3}C diag

60.1, 1 10 , 0.2    

while the required set point



Experimental Results

All required assumptions for the 
initialization phase have verified.

At the time slot                      the0 0.35t 

system stays at initial conditions.

At the time slot                          it                      0.35 1.26t 

undergoes the initialization phase.

At the time section 1.26 2.53t 

the system responses to and      .1
dx0v



Experimental Results

These are the control currents.

For the vertical actuators, only the 
upper coils were activated.



Experimental Results

For the attached payload the 
uncertain vector is estimated as,p

{0,0,7.044, 0.019, 0.011,0}Tp   

For this     , we have defined 7.1 p

In equilibrium condition, for ,  
we suppose to have 

1 1
dx x

We understand that,     here is 
compensating for uncertainties that 
are not considered in the model  

v p

v



Summary and Conclusions

• Some old results from robotics have been modified to suit the case of 
magnetic levitation application (to the set point goal).

• A brief introduction to our activities in the field of AMB has been presented.

• A 6-DOF precision positioning stage, based purely on magnetic 
levitation principles (developed at our Lab) was presented

• An unknown payload was assumed (and hence, an unknown c.g.) 

• The results were demonstrated experimentally. 

• The proposed algorithm can be used as an identification routine, allowing 
realization of a simple controller (that is not based on iterations).


