Teleoperation

Control setu

Existing approaches

Solution

▲□▶▲□▶▲□▶▲□▶ □□ のQで

Extensions

# **Optimal Control in**

# **Delayed Bilateral Teleoperation**

## Maxim Kristalny

#### Faculty of Mechanical Engineering, Technion-IIT

Joint work with Jang Ho Cho and Liran Malachi

2nd Swedish-Israeli Control Conference, Haifa, 2014

Control setup

Existing approaches

Solution

Extensions

### Outline



2 Control setup

- 3 Existing approaches
- 4 Solution
- 5 Extensions for multiple port haptic systems



| Teleo |  |
|-------|--|
|       |  |

Control setup

Existing approaches

Solution

Extensions

### Outline



# 2 Control setup

- 3 Existing approaches
- 4 Solution
- 5 Extensions for multiple port haptic systems

| Teleoperation<br>●○○ |  |  |
|----------------------|--|--|
|                      |  |  |

### Teleoperation

Remote operation of robotic/dynamical systems is required

- to perform tasks in unreachable/hazardous environments (space/ocean exploration, nuclear power, mining)
- in robotic systems used for medical surgery

(minimally invasive surgery, scaled environment, surgeon may be miles away)



| Teleoperation<br>●○○ |  |  |
|----------------------|--|--|
| Teleoperation        |  |  |

Remote operation of robotic/dynamical systems is required

- to perform tasks in unreachable/hazardous environments (space/ocean exploration, nuclear power, mining)
- in robotic systems used for medical surgery

(minimally invasive surgery, scaled environment, surgeon may be miles away)

#### Master device is used to control slave device in the task environment





### Unilateral vs. bilateral teleoperation

#### Unilateral teleoperation

- signals are sent in one direction (master  $\rightarrow$  slave)
- no force feedback

#### Bilateral teleoperation

- signals are sent in both directions
- force/haptic feedback is allowed

The goal is to achieve transparency of the teleoperation system.

(Two-directional force/position tracking to make the operator "fill" the task environment)







Master device

 Teleoperation
 Control setup
 Existing approach

 oo●
 oooo
 ooooo

Solution

Extensions

# Control of bilateral teleoperation systems

Both master and slave are dynamical systems and need to be controlled

Control goal is to couple the master and slave dynamics



 Teleoperation
 Control setup
 Existi

 oo●
 oooo
 oooo

pproaches

Solution

Extensions

### Control of bilateral teleoperation systems

Both master and slave are dynamical systems and need to be controlled Control goal is to couple the master and slave dynamics



Major challenges:

Communications delays

⇒ distributed control problem

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

Teleoperation ○○● Control setup

Existing approaches

Solution

Extensions

### Control of bilateral teleoperation systems

Both master and slave are dynamical systems and need to be controlled Control goal is to couple the master and slave dynamics



Major challenges:

- Communications delays
- Environment/operator dynamics
- ⇒ distributed control problem

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

⇒ robustness issues

Teleoperation ○○● Control setup

Existing approaches

Solution

Extensions

### Control of bilateral teleoperation systems

Both master and slave are dynamical systems and need to be controlled Control goal is to couple the master and slave dynamics



Major challenges:

- Communications delays
- Environment/operator dynamics
- ⇒ distributed control problem

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

⇒ robustness issues

|  | Control setup |  |
|--|---------------|--|
|  |               |  |

### Outline



# 2 Control setup

- 3 Existing approaches
- 4 Solution







- $G_m$  dynamics of the master device and operator arm
- $w_m$  operator command,  $y_m$  master measurements

 $G_s$  - dynamics of the slave device and known part of environment

 $w_s$  - unknown part of environment,  $y_s$  - slave measurements

| Control setup |  |
|---------------|--|
| •000          |  |

# Control setting



 $K_{11}$ ,  $K_{22}$  - master and slave local controllers (based on local information)

 $K_{12}$ ,  $K_{21}$  - master and slave bilateral controllers

(based on information from the "other side" - delayed)

 $u_m$ ,  $u_s$  - master and slave control signals

| Control setup<br>●○○○ |  |  |
|-----------------------|--|--|
|                       |  |  |

### Control setting



 $z_m$ ,  $z_s$  - position, force, velocity ... other signals to be coupled

performance index is defined as  $z \coloneqq \begin{bmatrix} (z_m - z_s)' & u'_m & u'_s \end{bmatrix}'$ 

small z = transparency achieved with reasonable control effort

|            | Control setup<br>○●○○ |  |  |
|------------|-----------------------|--|--|
| Being more | e specific            |  |  |

Master and slave dynamics can be defined as

$$G_m: \quad \begin{cases} M_m \ddot{\xi}_m + b_m \dot{\xi}_m = f_m + u_m \\ w_m = f_m \\ y_m = z_m = \begin{bmatrix} f_m \\ \xi_m \end{bmatrix} \qquad \qquad G_s: \quad \begin{cases} M_s \ddot{\xi}_s + b_s \dot{\xi}_s = f_s + u_s \\ w_s = f_s \\ y_s = z_z = \begin{bmatrix} f_s \\ \xi_s \end{bmatrix} \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □□ のQ@

 $\xi_*$  - position vector,  $f_*$  - external force,  $u_*$  - control signal,

 $M_m, b_m$  - inertia and damping matrices

| <b>D</b> 1 |               |  |  |
|------------|---------------|--|--|
|            | Control setup |  |  |

Master and slave dynamics can be defined as

$$G_m: \quad \begin{cases} M_m \ddot{\xi}_m + b_m \dot{\xi}_m = f_m + u_m \\ w_m = f_m \\ y_m = z_m = \begin{bmatrix} f_m \\ \xi_m \end{bmatrix} \qquad \qquad G_s: \quad \begin{cases} M_s \ddot{\xi}_s + b_s \dot{\xi}_s = f_s + u_s \\ w_s = f_s \\ y_s = z_z = \begin{bmatrix} f_s \\ \xi_s \end{bmatrix} \end{cases}$$

 $\xi_*$  - position vector,  $f_*$  - external force,  $u_*$  - control signal,

 $M_m, b_m$  - inertia and damping matrices

Our setting is an abstraction of the above formulation





#### Casting as a generalized control setup



Information constraints  $\Rightarrow$  constraints on controller structure (distributed control)

$$\begin{bmatrix} u_m \\ u_s \end{bmatrix} = \begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} y_m \\ y_s \end{bmatrix}$$

Off-diagonal blocks of K have to be delayed

Denote the set of admissible controllers by  $\ensuremath{\mathcal{S}}$ 

| Control setup |  |  |
|---------------|--|--|
| 0000          |  |  |

#### Casting as a generalized control setup



Delays can not be extracted  $\Rightarrow$  Distributed control problem

Is not equivalent to problem with input/output delays

No ready to use methods for handling this problem are available

Control setup ○○○● Existing approaches

Solution

Extensions

# Distributed control as a theoretical challenge

No analytical solutions for the general case

Optimal controller might be nonlinear

Attempts to find tractable solutions for special cases:

- positive systems
- convex optimization
- quadratic invariance

(H.S.Witsenhausen, 1968)

(Tanaka and Langbord, 2010; Rantzer, 2011)

(Boyd, 2004; Guo et al., 2010)

(Rotkowitz and Lall, 2006)

Theoretical research motivated by practical applications:

- formation control (Boyd, 2004; Gattami et al., 2011)
   wind farm control (Rantzer and Madjidian, 2010)
   power networks (Scherpen, 2011)
   traffic control (van Schuppen, 2011)
- bilateral teleoperation

・ロ> < 団> < 団> < 団> < ロ>

ontrol setup

Existing approaches

Solution

Extensions

### Outline

1 Teleoperation systems

# 2 Control setup

- 3 Existing approaches
- 4 Solution



◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▼ ���

|  | Existing approaches |  |
|--|---------------------|--|
|  | 0000                |  |

### Independent design of master/slave controllers

- 1. Design tracking systems for master and slave independently
- 2. Plug them to work together via communication channel



|  | Existing approaches |  |
|--|---------------------|--|
|  | 0000                |  |

### Independent design of master/slave controllers

- 1. Design tracking systems for master and slave independently
- 2. Plug them to work together via communication channel



- Overall system contains feedback interconnection with time delays
- S No guarantees on the joint behavior

|  | Existing approaches |  |
|--|---------------------|--|
|  | 0000                |  |

### Independent design of master/slave controllers

- 1. Design tracking systems for master and slave independently
- 2. Plug them to work together via communication channel



- Overall system contains feedback interconnection with time delays

- S No guarantees on the joint behavior
- Stability is an issue



- Stability is guaranteed regardless the delay length
- Restrictive design
- Synthesis procedure is not intuitive

|  | Existing approaches<br>○○●○○ |  |
|--|------------------------------|--|
|  |                              |  |

# $H^2/H^{\infty}/\mu$ controller synthesis

No ready to use optimization methods for decentralized problem ...



# $H^2/H^{\infty}/\mu$ controller synthesis - centralized

Implement all parts of the controller as a single block from one of the sides



# $H^2/H^{\infty}/\mu$ controller synthesis - centralized

Implement all parts of the controller as a single block from one of the sides



- Reduces the problem to centralized setting with input/output delays
- Standard techniques can be applied
  - time discretization / Pade approximation / loop shifting

Introduces unnecessary delays

# $H^2/H^{\infty}/\mu$ controller synthesis - centralized (contd.)

To make the control scheme less restrictive



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□■ のへ⊙

# $H^2/H^{\infty}/\mu$ controller synthesis - centralized (contd.)





Controller for the remote site can be designed separately

- Does not introduce unnecessary delays
- S No guarantee of global optimality
- Solution Not intuitive iterative synthesis procedure

|  | Existing approaches<br>○○○○● |  |
|--|------------------------------|--|
|  |                              |  |

Intermediate summary

Existing methods for control of delayed bilateral teleoperation systems

- restrict controller's structure
- do not result in holistic optimization-based synthesis procedure

Common belief:

- Global optimization is not feasible

(Because the problem falls into a category of distributed control problems)

▲□▶▲□▶▲□▶▲□▶ □□ のQで

|  | Existing approaches<br>○○○○● |  |
|--|------------------------------|--|
|  |                              |  |

#### Intermediate summary

Existing methods for control of delayed bilateral teleoperation systems

- restrict controller's structure
- do not result in holistic optimization-based synthesis procedure

#### - Is global optimization feasible?

(Because the problem falls into a category of distributed control problems)

We are going to show that intrinsic properties of teleoperation setup facilitate analytical solution of the problem ...

Control setup 0000 Existing approaches

Solution

Extensions

#### Outline

1 Teleoperation systems

# 2 Control setup

# 3 Existing approaches

# 4 Solution

5 Extensions for multiple port haptic systems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|  | Solution<br>•ooooooooooooooooooooooooooooooooooo |  |
|--|--------------------------------------------------|--|
|  |                                                  |  |

### Problem formulation

#### Going back to the original control setting



Consider  $H^2$  optimization

 $\min_{\text{stab. } K \in \mathcal{S}} ||G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}||_2$ 

|      | Solution<br>●୦୦୦୦୦୦୦୦୦୦୦ |  |
|------|--------------------------|--|
| <br> |                          |  |

### Problem formulation

#### Going back to the original control setting



Consider  $H^2$  optimization

$$\min_{\text{stab. } K \in \mathcal{S}} ||G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}||_2$$

Why/How does structural constraint  $K \in S$  complicates the problem?

One possible explanation: It impedes the use of Youla parameterization.

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回□ のQ@

|  | Solution<br>⊙●○○○○○○○○○○○ |  |
|--|---------------------------|--|
|  |                           |  |

### Youla parameterization

$$T = G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}$$



Assuming stable plant

- all stabilizing controllers:
- all stabilized systems:

The problem is affine in terms of Q

$$K = Q(I + G_{22}Q)^{-1}, \quad \forall Q \in H^{\infty}$$
$$T = G_{11} + G_{12}QG_{21}, \quad \forall Q \in H^{\infty}$$

シック・単純 (日本)(日本)(日本)(日本)

|  | Solution<br>○●○○○○○○○○○○○○ |  |
|--|----------------------------|--|
|  |                            |  |

### Youla parameterization

$$T = G_{11} + G_{12}K(I - G_{22}K)^{-1}G_{21}$$



Assuming stable plant

- all stabilizing controllers:
- all stabilized systems:

 $K = Q(I + G_{22}Q)^{-1}, \quad \forall Q \in H^{\infty}$  $T = G_{11} + G_{12}QG_{21}, \quad \forall Q \in H^{\infty}$ 

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回□ のQ@

The problem is affine in terms of Q

How to account for structural constraint, i.e.,  $Q \in \bigcirc$   $\Leftrightarrow$   $K \in S$ 

Generally, ? is difficult to find ... yet, in the case of teleoperation ...

|  | Solution<br>oc●ooooooooooo |  |
|--|----------------------------|--|
|  |                            |  |

### The structure of $G_{22}$

Master and slave dynamics are originally decoupled  $\Rightarrow$  G<sub>22</sub> is block-diagonal

$$z = \begin{bmatrix} G_{11} & I & G_{12} \\ G_{11} & I & G$$

It can be shown that

$$\underbrace{\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix}}_{K \in \mathcal{S}} \begin{bmatrix} G_{m_u} & 0 \\ 0 & G_{s_u} \end{bmatrix}} \underbrace{\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix}}_{K \in \mathcal{S}} = \underbrace{\begin{bmatrix} * & e^{-sh} * \\ e^{-sh} * & * \end{bmatrix}}_{\in \mathcal{S}}$$

|  | Solution<br>○○●○○○○○○○○○○ |  |
|--|---------------------------|--|
|  |                           |  |

#### The structure of $G_{22}$

Master and slave dynamics are originally decoupled  $\Rightarrow$  G<sub>22</sub> is block-diagonal

$$z = \begin{bmatrix} G_{11} & I & G_{12} \\ G_{11} & I & G$$

It can be shown that

$$\underbrace{\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix}}_{K \in \mathcal{S}} \begin{bmatrix} G_{m_u} & 0 \\ 0 & G_{s_u} \end{bmatrix} \underbrace{\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix}}_{K \in \mathcal{S}} = \underbrace{\begin{bmatrix} * & e^{-sh} * \\ e^{-sh} * & * \end{bmatrix}}_{\in \mathcal{S}}$$

and as a result  $K \in S \iff Q \in S$ 

|  | Solution<br>00000000000 |  |
|--|-------------------------|--|
|  |                         |  |

### Quadratic invariance

Problems for which  $K \in S \iff Q \in S$  are called quadratically invariant

- necessary and sufficient condition  $KG_{22}K \in S$
- the notion is proposed in (Rotkowitz and Lall, 2006)
- earlier research on related topics (Desoer, '80s; Voulgaris, 2000)

#### Active study during the last years

| - | characterization | and | interpretation |
|---|------------------|-----|----------------|
|---|------------------|-----|----------------|

partially ordered sets

fully connected networks with time delays

#### - quest for a complete analytical solution

two players with one-directional communication

state-feedback with decoupled disturbances

(Shah and Parrilo, 2006) (Rotkowitz etc., 2010)

(Swigart and Lall, 2010)

(Shah and Parrilo, 2011)

▲□▶▲□▶▲□▶▲□▶ □□ のQで

 Teleoperation
 Control setup
 Existing approaches
 Solution
 Extensions

 000
 0000
 00000
 00000
 00000

### Quadratic invariance - consequences

Parameterization of all stabilizing controllers  $K = Q(I + G_{22}Q)^{-1}, \forall Q \in S \cap H^{\infty}$ Parameterization of all stabilized systems  $T = G_{11} + G_{12}QG_{21}, \forall Q \in S \cap H^{\infty}$ 

The problem reduces to

model matching with structural constraints on the design parameter

$$\min_{\text{stab. } K \in \mathcal{S}} ||\mathcal{F}_l(G, K)||_2 = \min_{Q \in \mathcal{S} \cap H^\infty} ||G_{11} + G_{12}QG_{21}||_2$$

The questions are:

- How to find optimal *Q*?
- Given optimal Q,

what is the structure of optimal K and how to implement it?

 Teleoperation
 Control setup
 Existing approaches
 Solution
 Extensions

 000
 0000
 00000
 00000
 000000
 000000

### Quadratic invariance - consequences

Parameterization of all stabilizing controllers  $K = Q(I + G_{22}Q)^{-1}, \forall Q \in S \cap H^{\infty}$ Parameterization of all stabilized systems  $T = G_{11} + G_{12}QG_{21}, \forall Q \in S \cap H^{\infty}$ 

The problem reduces to

model matching with structural constraints on the design parameter

$$\min_{\text{stab. } K \in \mathcal{S}} ||\mathcal{F}_l(G, K)||_2 = \min_{Q \in \mathcal{S} \cap H^\infty} ||G_{11} + G_{12}QG_{21}||_2$$

The questions are:

- How to find optimal *Q*?
- Given optimal Q,

what is the structure of optimal K and how to implement it?

|              |          | Solution<br>○○○○○●○○○○○○○○ |  |
|--------------|----------|----------------------------|--|
| Controller s | tructure |                            |  |

Detailed form of  $K = Q(I + G_{22}Q)^{-1}$  is

$$\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix} = \begin{bmatrix} Q_{11} & e^{-sh}Q_{12} \\ e^{-sh}Q_{21} & Q_{22} \end{bmatrix}$$
$$\begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G_{m_u} & 0 \\ 0 & G_{s_u} \end{bmatrix} \begin{bmatrix} Q_{11} & e^{-sh}Q_{12} \\ e^{-sh}Q_{21} & Q_{22} \end{bmatrix} \end{pmatrix}^{-1}$$

Deriving explicit formulae for the components of K leads to bulky expressions

|  | Solution<br>○○○○○●○○○○○○○ |  |
|--|---------------------------|--|

#### Controller structure

Detailed form of  $K = Q(I + G_{22}Q)^{-1}$  is

$$\begin{bmatrix} K_{11} & e^{-sh}K_{12} \\ e^{-sh}K_{21} & K_{22} \end{bmatrix} = \begin{bmatrix} Q_{11} & e^{-sh}Q_{12} \\ e^{-sh}Q_{21} & Q_{22} \end{bmatrix}$$
$$\begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} + \begin{bmatrix} G_{m_u} & 0 \\ 0 & G_{s_u} \end{bmatrix} \begin{bmatrix} Q_{11} & e^{-sh}Q_{12} \\ e^{-sh}Q_{21} & Q_{22} \end{bmatrix} \end{pmatrix}^{-1}$$

Deriving explicit formulae for the components of *K* leads to bulky expressions Instead, consider graphical interpretation

$$K = Q(I + G_{22}Q)^{-1} \iff \begin{bmatrix} Q_{11} & | & e^{-sh}Q_{12} \\ & & e^{-sh}Q_{21} & | & Q_{22} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

|  | 0000000000000 |
|--|---------------|

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回□ のQ@

# Controller structure (contd.)



Communication is based on  $v_m$  and  $v_s$  signals

- parts of the outputs driven by external disturbances

Alternative for passivity-based schemes

- stability is guaranteed regardless the delay length
- unlike passivity-based schemes, structure not restrictive

|               |         | Solution<br>000000000000 |  |
|---------------|---------|--------------------------|--|
| Back to optim | ization |                          |  |

To find optimal Q we need to solve

 $\min_{Q\in\mathcal{S}\cap H^{\infty}} ||G_{11}+G_{12}QG_{21}||_2$ 

- Model matching optimization

with structural constraints on the design parameter

- Fundamental open problem

in the context of quadratically invariant distributed control

▲□▶▲□▶▲□▶▲□▶ □□ のQで

- Only some special cases have been solved so far (Swigart and Lall, 2010; Lessard and Lall, 2011; Kristalny and Shah, 2012; Lampersi and Doyle, 2012)

|               |         | Solution<br>○○○○○○○○○○○○○○ |  |
|---------------|---------|----------------------------|--|
| Back to optim | ization |                            |  |

To find optimal Q we need to solve

 $\min_{Q\in\mathcal{S}\cap H^{\infty}} ||G_{11}+G_{12}QG_{21}||_2$ 

Model matching optimization

with structural constraints on the design parameter

- Fundamental open problem

in the context of quadratically invariant distributed control

- Only some special cases have been solved so far (Swigart and Lall, 2010; Lessard and Lall, 2011; Kristalny and Shah, 2012; Lampersi and Doyle, 2012)

Again natural properties of teleoperation setup facilitate the solution ....

|             |                | Solution<br>○○○○○○○●○○○○○ |  |
|-------------|----------------|---------------------------|--|
| The structu | re of $G_{21}$ |                           |  |

Master and slave do not have common disturbances  $\Rightarrow$   $G_{21}$  is block diagonal

$$z = \begin{bmatrix} G_{11} & I & G_{12} \\ G_{m_w} & 0 & G_{m_u} & 0 \\ G_{m_w} & 0 & G_{m_u} & 0 \\ 0 & G_{s_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & \vdots & \vdots \\ g_{m_w} & 0 & G_{s_u} \\ \vdots & g_{m_w} & 0 & G_{m_w} \\$$

| <br>• • |          |  |
|---------|----------|--|
|         | Solution |  |

#### The structure of $G_{21}$

Master and slave do not have common disturbances  $\Rightarrow$   $G_{21}$  is block diagonal

$$z \leftarrow \begin{bmatrix} G_{11} & G_{12} \\ G_{m_u} & 0 & G_{m_u} \end{bmatrix} \leftarrow \begin{bmatrix} w_m \\ w_s \end{bmatrix}$$
$$\begin{bmatrix} g_{m_u} & 0 & G_{m_u} \end{bmatrix} \leftarrow \begin{bmatrix} u_m \\ 0 & G_{s_u} \end{bmatrix} \leftarrow \begin{bmatrix} u_m \\ u_s \end{bmatrix}$$
$$\begin{bmatrix} u_m \\ u_s \end{bmatrix}$$

As a result,



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

|               |           | Solution<br>○○○○○○○●○○○○ |  |
|---------------|-----------|--------------------------|--|
| Splitting the | e problem |                          |  |

#### We can consider each column apart



$$T_1 = G_{m_z} + G_{12} \begin{bmatrix} Q_{11} \\ e^{-sh}Q_{21} \end{bmatrix} G_{m_w}$$
$$T_2 = G_{s_z} + G_{12} \begin{bmatrix} e^{-sh}Q_{12} \\ Q_{22} \end{bmatrix} G_{s_w}$$

(depends on  $Q_{11}$ ,  $Q_{21}$  only)

(depends on  $Q_{12}$ ,  $Q_{22}$  only)

|               |         | Solution<br>○○○○○○○●○○○○ |  |
|---------------|---------|--------------------------|--|
| Splitting the | problem |                          |  |

#### We can consider each column apart



 $H^2$  norm satisfies

 $||T||_2^2 = ||T_1||_2^2 + ||T_2||_2^2$ 

The problems splits into

 $\min_{\mathcal{Q}_{11,21}\in\mathcal{H}^{\infty}}||T_1||_2 , \quad \min_{\mathcal{Q}_{12,22}\in\mathcal{H}^{\infty}}||T_2||_2$ 

|  | 000000000000000000000000000000000000000 |  |
|--|-----------------------------------------|--|

### Splitting the problem - interpretation



Two independent problems:

- 1.  $Q_{11}, Q_{21}$  control of overall system based on the master measurements
- 2.  $Q_{12}$ ,  $Q_{22}$  control of overall system based on the slave measurements

(The problem splits with respect to the measurements

and not the controlled objects)

|  | 00000000000000 |  |
|--|----------------|--|

### Splitting the problem - interpretation



Two independent problems:

- 1.  $Q_{11}, Q_{21}$  control of overall system based on the master measurements
- 2.  $Q_{12}$ ,  $Q_{22}$  control of overall system based on the slave measurements

(The problem splits with respect to the measurements

and not the controlled objects)

|  | 00000000000000 |  |
|--|----------------|--|

### Splitting the problem - interpretation



Two independent problems:

- 1.  $Q_{11}, Q_{21}$  control of overall system based on the master measurements
- 2. Q12, Q22 control of overall system based on the slave measurements

(The problem splits with respect to the measurements

and not the controlled objects)

TeleoperationControl setupExisting approaches000000000000

Solution

Extensions

## Splitting the problem - why does it help?

#### Consider the first column

(the second can be handled in a similar manner)

$$T_1 = G_{m_z} + G_{12} \begin{bmatrix} Q_{11} \\ e^{-sh}Q_{21} \end{bmatrix} G_{m_w}$$

Delay can be extracted out of the design parameter

$$T_1 = G_{m_z} + G_{12} \begin{bmatrix} I & 0 \\ 0 & e^{-sh} \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{21} \end{bmatrix} G_{m_w}$$

This shifts the problem into another category (problem with input delay) Using Pade or time discretization delay can be absorbed into the state

- blurs problem structure, increases dimension of AREs
- leads to high-order black-box controllers

Is there an elegant way to deal with delays?

Teleoperation

Control setup

Existing approaches

Solution

Extensions

### Exploiting recent results (contd.)

Recent results in the area of delayed systems control:

"Dead-Time Compensation for Systems with Multiple I/O Delays:

A Loop Shifting Approach," IEEE TAC, 2011

▲□▶▲□▶▲□▶▲□▶ □□ のQで

by L. Mirkin and Z. J. Palmor and D. Shneiderman

|               |                    |                       | Solution<br>○○○○○○○○○○○○ |  |
|---------------|--------------------|-----------------------|--------------------------|--|
| The resulting | ng solution        |                       |                          |  |
| Solution      | in terms of ARE of | of the same dimension | as in delay-free case    |  |

W<sub>S</sub>

 $Z_S$ 

 $G_s$   $G_{s_u}$ 

 $v_s$ 

Optimal controller has easy to implement structure:

 $O_1$ 

 $\Pi_2$ 

Π

 $Q_{21}$ 

 $v_m$ 

Explicit state-space formulae for  $\tilde{Q}_*$  are derived

FIR blocks  $\Pi_{1/2}$  are the only infinite dimensional components

 $Z_m$ 

 $w_m$ 

 $G_m$ 

Control setup 0000 Existing approaches

Solution

Extensions

### Outline

1 Teleoperation systems

2 Control setup

3 Existing approaches

# 4 Solution

# 5 Extensions for multiple port haptic systems

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Control setup

Existing approaches

Solution

Extensions

#### Cooperative teleoperation



Cooperative bilateral teleoperation:

cooperative operation of multiple master/slave pairs.

Needed to perform complex tasks,

which cannot be conducted by a single operator.

|  |  | 00000 |
|--|--|-------|
|  |  |       |

#### Cooperative teleoperation - natural control architecture



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□■ のへで

- Slave communicates with two masters
- Each site has a local controller

|  |  | 000000 |
|--|--|--------|

Cooperative teleoperation - generalized plant



Unlike the single mater/slave case, this setup is not QI

 $KG_{22}K \notin S$ 

But there is a way to circumvent this difficulty ...

|  |  | 000000 |
|--|--|--------|

#### Cooperative teleoperation - modified QI control architecture

Allowing communication between masters makes the problem QI



 $K = \begin{bmatrix} K_{ss} & e^{-sh_1}K_{s1} & e^{-sh_2}K_{s2} \\ e^{-sh_1}K_{1s} & K_{11} & e^{-sh_3}K_{12} \\ e^{-sh_2}K_{2s} & e^{-sh_3}K_{21} & K_{22} \end{bmatrix}$ 

#### Cooperative teleoperation - modified QI control architecture

Communication can be implemented through the slave site



|  |  | 000000 |
|--|--|--------|

### Resulting solution - controller structure



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

|  |  | Extensions |
|--|--|------------|
|  |  |            |

### Possible generalization

Coordination of arbitrary number of agents over delayed communication



P<sub>i</sub> - subsystems

- $w_i, y_i, u_i$  local signals
- Ki local controllers

Required properties:

- uncoupled agent dynamics
- independent external disturbances

The requirement on joint behaviour is the only coupling term.

### Open problems

- How to construct optimization criteria

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Experimental validation
- Robustness issues

Thank you for attention!

# **Riccati equations**

◆□ ▶ < @ ▶ < E ▶ < E ▶ E = 900</p>

#### AREs