Scalable Control of Positive Systems

Anders Rantzer

LCCC Linnaeus Center Lund University

Sweden

Wind Farms Need Control

Picture from http://www.hochtief.com/hochtief_en/9164.jhtml

Most wind farms today are paid to maximize power production. Future farms will have to curtial power at contracted levels.

New control objective: Minimize fatigue loads subject to fixed total production.

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems

Minimizing Fatigue Loads

Single turbine control:

Minimize tower pressure variance subject to linearized dynamics with measurements of pitch angle and rotor speed.

Optimal controller: $u_i^{\text{loc}}(t)$

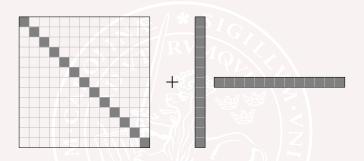
Wind farm control:

Minimize sum of all tower pressure variances subject to fixed total production of the farm: $\sum_{i=1}^{m} u_i = 0$

Optimal controller: $u_i(t) = u_i^{\text{loc}}(t) - \frac{1}{m} \sum_{j=1}^m u_j^{\text{loc}}(t)$.

[PhD thesis by Daria Madjidian, Lund University, June 2014]

Controller Structure



Linear quadratic control of *m* identical systems and a constraint $\sum_{i=1}^{m} u_i = 0$ gives an optimal feedback matrix with two parts:

- One is localized (diagonal).
- The other has rank one (control of the average state).

Server Farms Need Control

Picture from http://www.dawn.com/news/1017980

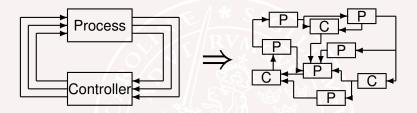
Single server control:

Assign resources (processor speed, memory, etc.) to minimize variance in completion time.

Server farm control:

Minimize sum of all time variances with fixed total resources.

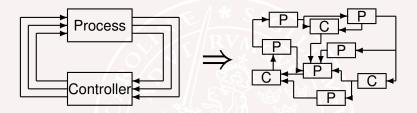
Towards a Scalable Control Theory



• Linear quadratic control uses $O(n^3)$ flops, $O(n^2)$ memory

Model Predictive Control requires even more
1666
Today: Exploiting monotone/positive systems

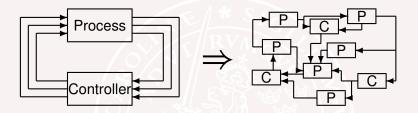
Towards a Scalable Control Theory



- Linear quadratic control uses $O(n^3)$ flops, $O(n^2)$ memory
- Model Predictive Control requires even more

• Today: Exploiting monotone/positive systems

Towards a Scalable Control Theory



- Linear quadratic control uses $O(n^3)$ flops, $O(n^2)$ memory
- Model Predictive Control requires even more
- Today: Exploiting monotone/positive systems

Outline

- Positive and Monotone Systems
- Scalable Stability Analysis
- Input-Output Performance
- Trajectory Optimization
- Combination Therapy for HIV and Cancer

Positive systems

A linear system is called *positive* if the state and output remain nonnegative as long as the initial state and the inputs are nonnegative:

$$\frac{dx}{dt} = Ax + Bu \qquad \qquad y = Cx$$

Equivalently, A, B and C have nonnegative coefficients except for the diagonal of A.

Examples:

- Probabilistic models.
- Economic systems.
- Chemical reactions.
- Ecological systems.

Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912) Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979) Dynamical Systems: Luenberger (1979)

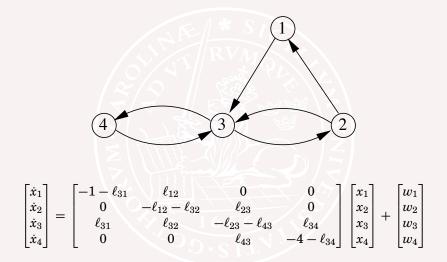
Recent control related work:

Biology inspired theory: Angeli and Sontag (2003) Synthesis by linear programming: Rami and Tadeo (2007) Switched systems: Liu (2009), Fornasini and Valcher (2010) Distributed control: Tanaka and Langbort (2010) Robust control: Briat (2013)

Example 1: Transportation Networks

- Cloud computing / server farms
- Heating and ventilation in buildings
- Traffic flow dynamics
- Production planning and logistics

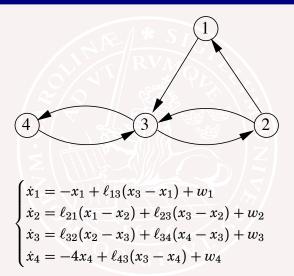
A Transportation Network is a Positive System



How do we select ℓ_{ij} to minimize the gain from w to x?

Example 2: A vehicle formation

Example 2: Vehicle Formations



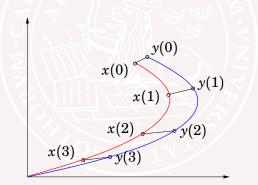
How do we select ℓ_{ij} to minimize the gain from w to x?

Nonlinear Monotone Systems

The system

$$\dot{x}(t) = f(x(t), u(t)),$$
 $x(0) = a$

is a monotone system if its linearization is a positive system.



Macroscopic Models of Traffic Flow

Partial differential equation by Lighthill/Whitham (1955), Richards (1956) based on mass-conservation:

$$0 = \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} f(\rho)$$

where $\rho(x,t)$ is traffic density in position x at time t and $f(\rho)$ expresses flow as function of density.

Spatial discretization by Daganzo (1994).

Both models are monotone systems!

Exploited for lines: [Gomes/Horowitz/Kurzhanskiy/Varaiya/Kwon, 2008]. Exploited for networks: [Lovisari/Como/Rantzer/Savla, MTNS-14].

Outline

- Positive and Monotone Systems
- Scalable Stability Analysis
- Input-Output Performance
- Trajectory Optimization
- Combination Therapy for HIV and Cancer

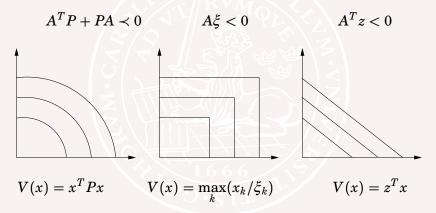
Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements. Then the following conditions are equivalent:

- (*i*) The system $\frac{dx}{dt} = Ax$ is exponentially stable.
- (*ii*) There is a *diagonal* matrix $P \succ 0$ such that $A^T P + PA \prec 0$
- (*iii*) There exists a vector $\xi > 0$ such that $A\xi < 0$. (The vector inequalities are elementwise.)
- (*iv*) There exits a vector z > 0 such that $A^T z < 0$.

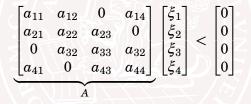
Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different Lyapunov functions:



A Scalable Stability Test

Stability of $\dot{x} = Ax$ follows from existence of $\xi_k > 0$ such that



The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

```
Verification is scalable!
```

. . .

A Distributed Search for Stabilizing Gains

Suppose
$$\begin{bmatrix} a_{11} - \ell_1 & a_{12} & 0 & a_{14} \\ a_{21} + \ell_1 & a_{22} - \ell_2 & a_{23} & 0 \\ 0 & a_{32} + \ell_2 & a_{33} & a_{32} \\ a_{41} & 0 & a_{43} & a_{44} \end{bmatrix} \ge 0 \text{ for } \ell_1, \ell_2 \in [0, 1].$$

For stabilizing gains ℓ_1, ℓ_2 , find $0 < \mu_k < \xi_k$ such that

$$\begin{bmatrix} a_{11} & a_{12} & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{32} \\ a_{41} & 0 & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 1 & -1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} < \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

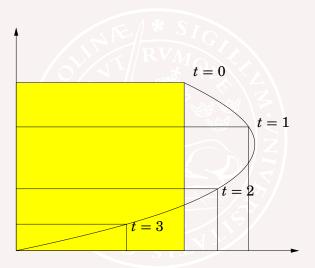
and set $\ell_1 = \mu_1/\xi_1$ and $\ell_2 = \mu_2/\xi_2$. Every row gives a local test. Distributed synthesis by linear programming (gradient search). Let $\dot{x} = f(x)$ be a monotone system such that the origin globally asymptotically stable and the compact set $X \subset \mathbb{R}^n_+$ is invariant. Then there exist strictly increasing functions $V_k : \mathbb{R}_+ \to \mathbb{R}_+$ for k = 1, ..., n, such that $V(x) = \max\{V_1(x_1), ..., V_n(x_n)\}$ satisfies

$$\frac{d}{dt}V(x(t)) = -V(x(t))$$

along all trajectories in X.

[Rantzer, Rüffer, Dirr, CDC-13]

Proof idea



Outline

- Positive and Monotone Systems
- Scalable Stability Analysis
- Input-Output Performance
- Trajectory Optimization
- Combination Therapy for HIV and Cancer

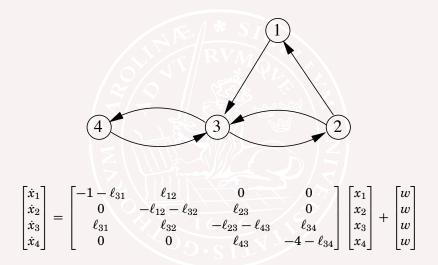
Performance of Positive systems

Suppose that $\mathbf{G}(s) = C(sI - A)^{-1}B + D$ where $A \in \mathbb{R}^{n \times n}$ is Metzler, while $B \in \mathbb{R}^{n \times 1}_+$, $C \in \mathbb{R}^{1 \times n}_+$ and $D \in \mathbb{R}_+$. Define $\|\mathbf{G}\|_{\infty} = \sup_{\omega} |G(i\omega)|$. Then the following are equivalent:

(*i*) The matrix A is Hurwitz and $\|\mathbf{G}\|_{\infty} < \gamma$.

(*ii*) The matrix
$$\begin{bmatrix} A & B \\ C & D - \gamma \end{bmatrix}$$
 is Hurwitz.

Example 1: Transportation Networks



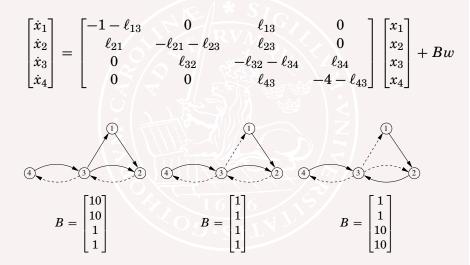
How do we select $\ell_{ij} \in [0, 1]$ to minimize the gain from w to $\sum_i x_i$?

Example 1: Transportation Networks

$$\begin{array}{c} (4) \\ (4) \\ (4) \\ (3) \\ (2) \\ (3) \\ (2) \\ (3) \\ (2) \\ (3) \\ (2) \\ (3) \\ (2) \\ (3) \\ (2) \\ (3) \\$$

Optimal solution $\ell_{12} = \ell_{32} = \ell_{43} = 1$ and $\ell_{31} = \ell_{23} = \ell_{34} = 0$.

Example 2: Vehicle Formations



Outline

- Positive and Monotone Systems
- Scalable Stability Analysis
- Input-Output Performance
- Trajectory Optimization
- Combination Therapy for HIV and Cancer

Convex-Monotone Systems

The system

$$\dot{x}(t) = f(x(t), u(t)), \qquad x(0) = a$$

is a monotone system if its linearization is a positive system. It is a convex monotone system if every row of f is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

For a convex monotone system $\dot{x} = f(x, u)$, each component of the trajectory $\phi_t(a, u)$ is a convex function of (a, u).

Outline

- Positive and Monotone Systems
- Scalable Stability Analysis
- Input-Output Performance
- Trajectory Optimization
- Combination Therapy for HIV and Cancer

Combination Therapy is a Control Problem

Evolutionary dynamics:

$$\dot{x} = \left(A - \sum_{i} u_i D^i\right) x$$

Each state x_k is the concentration of a mutant. (There can be hundreds!) Each input u_i is a drug dosage.

A describes the mutation dynamics without drugs, while D^1, \ldots, D^m are diagonal matrices modeling drug effects.

Determine $u_1, \ldots, u_m \ge 0$ with $u_1 + \cdots + u_m \le 1$ such that x decays as fast as possible!

[Hernandez-Vargas, Colaneri and Blanchini, JRNC 2011] [Jonsson, Rantzer, Murray, ACC 2014]

Optimizing Decay Rate

Stability of the matrix $A - \sum_i u_i D^i + \gamma I$ is equivalent to existence of $\xi > 0$ with

$$(A-\sum_i u_i D^i+\gamma I)\xi<0$$

For row k, this means

$$A_k \xi - \sum_i u_i D_k^i \xi_k + \gamma \xi_k < 0$$

or equivalently

$$\frac{A_k\xi}{\xi_k} - \sum_i u_i D_k^i + \gamma < 0$$

Maximizing γ is convex optimization in $(\log \xi_i, u_i, \gamma)$!

Using Measurements of Virus Concentrations

Evolutionary dynamics:

$$\dot{x}(t) = \left(A - \sum_{i} u_i(t)D^i\right)x(t)$$

Can we get faster decay using time-varying u(t) based on measurements of x(t) ?

Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex monotone system:

$$\frac{d}{dt}\log x_k(t) = \frac{A_k x(t)}{x_k(t)} - \sum_i u_i(t) D_k^i$$

Hence the decay of $\log x_k$ is a convex function of the input and optimal trajectories can be found even for large systems.

Example

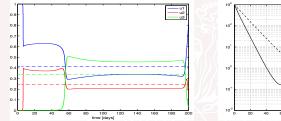
$$A = \begin{bmatrix} -\delta & \mu & \mu & 0 \\ \mu & -\delta & 0 & \mu \\ \mu & 0 & -\delta & \mu \\ 0 & \mu & \mu & -\delta \end{bmatrix}$$

clearance rate $\delta = 0.24 \text{ day}^{-1}$, mutation rate $\mu = 10^{-4} \text{ day}^{-1}$ and replication rates for viral variants and therapies as follows

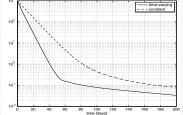
Variant	Therapy 1	Therapy 2	Therapy 3
Wild type (x_1)	$D_1^1 = 0.05$	$D_1^2 = 0.10$	$D_1^3 = 0.30$
Genotype 1 (x_2)	$D_2^{\overline{1}} = 0.25$	$D_2^{\overline{2}} = 0.05$	$D_2^{\bar{3}} = 0.30$
Genotype 2 (x_3)	$D_3^{\overline{1}} = 0.10$	$D_3^{\overline{2}} = 0.30$	$D_3^{\overline{3}} = 0.30$
HR type (x_4)	$D_4^1 = 0.30$	$D_4^{2} = 0.30$	$D_4^3 = 0.15$

Example

Optimized drug doses:



Total virus population:



For Scalable Control — Use Positive Systems!

- Verification and synthesis scale linearly
- Distributed controllers by linear programming
- No need for global information
- Optimal trajectiories by convex optimization

Many Research Challenges Remain

- Optimal Dynamic Controllers in Positive Systems
- Analyze Trade-off Between Performance and Scalability
- Distributed Controllers for Nonlinear Monotone Systems

Thanks!

Enrico Lovisari Vanessa Jonsson

Daria Madjidian

Martina Maggio

Alessandro Papadopoulos Bo Bernhardsson Fredrik Magnusson

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems