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Wind Farms Need Control

Picture from http://www.hochtief.com/hochtief_en/9164.jhtml

Most wind farms today are paid to maximize power production.
Future farms will have to curtial power at contracted levels.

New control objective:
Minimize fatigue loads subject to fixed total production.

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Minimizing Fatigue Loads

Single turbine control:
Minimize tower pressure variance subject to linearized
dynamics with measurements of pitch angle and rotor speed.

Optimal controller: uloci (t)

Wind farm control:
Minimize sum of all tower pressure variances subject to
fixed total production of the farm:

∑m
i=1 ui = 0

Optimal controller: ui(t) = uloci (t)−
1
m

∑m
j=1 u

loc
j (t).

[PhD thesis by Daria Madjidian, Lund University, June 2014]
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Controller Structure

C

Linear quadratic control of m identical systems and a constraint
∑m
i=1 ui = 0 gives an optimal feedback matrix with two parts:

One is localized (diagonal).

The other has rank one (control of the average state).
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Server Farms Need Control

Picture from http://www.dawn.com/news/1017980

Single server control:
Assign resources (processor speed, memory, etc.) to minimize
variance in completion time.

Server farm control:
Minimize sum of all time variances with fixed total resources.
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Towards a Scalable Control Theory
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Linear quadratic control uses O(n3) flops, O(n2) memory

Model Predictive Control requires even more

Today: Exploiting monotone/positive systems

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Towards a Scalable Control Theory

Process

!Controller

"

!
!

"
"

"
P C

P

PC

P

P

P
C

" "
"

!

!
!

##$ "
!!

!

!

Linear quadratic control uses O(n3) flops, O(n2) memory

Model Predictive Control requires even more

Today: Exploiting monotone/positive systems

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Towards a Scalable Control Theory

Process

!Controller

"

!
!

"
"

"
P C

P

PC

P

P

P
C

" "
"

!

!
!

##$ "
!!

!

!

Linear quadratic control uses O(n3) flops, O(n2) memory

Model Predictive Control requires even more

Today: Exploiting monotone/positive systems

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Outline

• Positive and Monotone Systems

○ Scalable Stability Analysis

○ Input-Output Performance

○ Trajectory Optimization

○ Combination Therapy for HIV and Cancer
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Positive systems

A linear system is called positive if the state and output remain
nonnegative as long as the initial state and the inputs are
nonnegative:

dx

dt
= Ax + Bu y= Cx

Equivalently, A, B and C have nonnegative coefficients except
for the diagonal of A.

Examples:

Probabilistic models.

Economic systems.

Chemical reactions.

Ecological systems.
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Positive Systems and Nonnegative Matrices

Classics:

Mathematics: Perron (1907) and Frobenius (1912)

Economics: Leontief (1936)

Books:

Nonnegative matrices: Berman and Plemmons (1979)

Dynamical Systems: Luenberger (1979)

Recent control related work:

Biology inspired theory: Angeli and Sontag (2003)

Synthesis by linear programming: Rami and Tadeo (2007)

Switched systems: Liu (2009), Fornasini and Valcher (2010)

Distributed control: Tanaka and Langbort (2010)

Robust control: Briat (2013)
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Example 1: Transportation Networks

Cloud computing / server farms

Heating and ventilation in buildings

Traffic flow dynamics

Production planning and logistics
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A Transportation Network is a Positive System
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How do we select $i j to minimize the gain from w to x?
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Example 2: A vehicle formation
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Example 2: Vehicle Formations
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ẋ1 = −x1 + $13(x3 − x1) +w1
ẋ2 = $21(x1 − x2) + $23(x3 − x2) +w2
ẋ3 = $32(x2 − x3) + $34(x4 − x3) +w3
ẋ4 = −4x4 + $43(x3 − x4) +w4

How do we select $i j to minimize the gain from w to x?
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Nonlinear Monotone Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is a monotone system if its linearization is a positive system.

x(0)

x(1)

x(2)

x(3)

y(0)

y(1)

y(2)

y(3)
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Macroscopic Models of Traffic Flow

1 Partial differential equation by Lighthill/Whitham (1955),
Richards (1956) based on mass-conservation:

0 =
%ρ

%t
+
%

%x
f (ρ)

where ρ(x, t) is traffic density in position x at time t and
f (ρ) expresses flow as function of density.

2 Spatial discretization by Daganzo (1994).

Both models are monotone systems!

Exploited for lines: [Gomes/Horowitz/Kurzhanskiy/Varaiya/Kwon, 2008].
Exploited for networks: [Lovisari/Como/Rantzer/Savla, MTNS-14].
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Outline

○ Positive and Monotone Systems

• Scalable Stability Analysis

○ Input-Output Performance

○ Trajectory Optimization

○ Combination Therapy for HIV and Cancer

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Stability of Positive systems

Suppose the matrix A has nonnegative off-diagonal elements.
Then the following conditions are equivalent:

(i) The system dx
dt = Ax is exponentially stable.

(ii) There is a diagonal matrix P & 0 such that
ATP+ PA ≺ 0

(iii) There exists a vector ξ > 0 such that Aξ < 0.
(The vector inequalities are elementwise.)

(iv) There exits a vector z > 0 such that AT z < 0.
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Lyapunov Functions of Positive systems

Solving the three alternative inequalities gives three different
Lyapunov functions:

ATP+ PA ≺ 0 Aξ < 0 AT z < 0

V (x) = xT Px V (x) = max
k
(xk/ξk) V (x) = zT x
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A Scalable Stability Test
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Stability of ẋ = Ax follows from existence of ξk > 0 such that
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The first node verifies the inequality of the first row.

The second node verifies the inequality of the second row.

. . .

Verification is scalable!
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A Distributed Search for Stabilizing Gains

Suppose
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and set $1 = µ1/ξ1 and $2 = µ2/ξ2. Every row gives a local test.

Distributed synthesis by linear programming (gradient search).
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Max-separable Lyapunov Functions

Let ẋ = f (x) be a monotone system such that the origin
globally asymptotically stable and the compact set X ⊂ Rn+ is
invariant. Then there exist strictly increasing functions
Vk : R+ → R+ for k = 1, . . . ,n, such that
V (x) = max{V1(x1), . . . ,Vn(xn)} satisfies

d

dt
V (x(t)) = −V (x(t))

along all trajectories in X .

[Rantzer, Rüffer, Dirr, CDC-13]
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Proof idea

t = 0

t = 1

t = 2

t = 3
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Outline

○ Positive and Monotone Systems

○ Scalable Stability Analysis

• Input-Output Performance

○ Trajectory Optimization

○ Combination Therapy for HIV and Cancer
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Performance of Positive systems

Suppose that G(s) = C(sI − A)−1B + D where A ∈ Rn,n is
Metzler, while B ∈ Rn,1+ , C ∈ R1,n+ and D ∈ R+. Define
-G-∞ = supω /G(iω )/. Then the following are equivalent:

(i) The matrix A is Hurwitz and -G-∞ < γ .

(ii) The matrix

[

A B

C D − γ

]

is Hurwitz.
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Example 1: Transportation Networks
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How do we select $i j ∈ [0, 1] to minimize the gain from w to
∑

i xi?
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Example 1: Transportation Networks

2

1

4 3

Minimize
∑

i ξ i subject to

0 ≥ −ξ1 − µ31 + µ12 + 1

0 ≥ −µ12 − µ32 + µ23 + 1

0 ≥ µ31 + µ32 − µ23 − µ43 + µ34 + 1

0 ≥ −4ξ4 + µ43 − µ34 + 1

and 0 ≤ µ i j ≤ ξ j . Then define $i j = µ i j/ξ j .

Optimal solution $12 = $32 = $43 = 1 and $31 = $23 = $34 = 0.
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Example 2: Vehicle Formations
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Outline

○ Positive and Monotone Systems

○ Scalable Stability Analysis

○ Input-Output Performance

• Trajectory Optimization

○ Combination Therapy for HIV and Cancer
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Convex-Monotone Systems

The system

ẋ(t) = f (x(t),u(t)), x(0) = a

is a monotone system if its linearization is a positive system. It
is a convex monotone system if every row of f is also convex.

Theorem. [Rantzer/ Bernhardsson (2014)]

For a convex monotone system ẋ = f (x,u), each component of
the trajectory φ t(a,u) is a convex function of (a,u).
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Combination Therapy is a Control Problem

Evolutionary dynamics:

ẋ =

(

A−
∑

i

uiD
i

)

x

Each state xk is the concentration of a mutant. (There can be
hundreds!) Each input ui is a drug dosage.

A describes the mutation dynamics without drugs, while
D1, . . . ,Dm are diagonal matrices modeling drug effects.

Determine u1, . . . ,um ≥ 0 with u1 + ⋅ ⋅ ⋅+ um ≤ 1 such that x
decays as fast as possible!

[Hernandez-Vargas, Colaneri and Blanchini, JRNC 2011]
[Jonsson, Rantzer,Murray, ACC 2014]
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Optimizing Decay Rate

Stability of the matrix A−
∑

i uiD
i + γ I is equivalent to

existence of ξ > 0 with

(A−
∑

i

uiD
i + γ I)ξ < 0

For row k, this means

Akξ −
∑

i

uiD
i
kξk + γ ξk < 0

or equivalently

Akξ

ξk
−
∑

i

uiD
i
k + γ < 0

Maximizing γ is convex optimization in (logξ i,ui,γ ) !
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Using Measurements of Virus Concentrations

Evolutionary dynamics:

ẋ(t) =

(

A−
∑

i

ui(t)D
i

)

x(t)

Can we get faster decay using time-varying u(t) based on
measurements of x(t) ?
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Using Measurements of Virus Concentrations

The evolutionary dynamics can be written as a convex
monotone system:

d

dt
log xk(t) =

Akx(t)

xk(t)
−
∑

i

ui(t)D
i
k

Hence the decay of log xk is a convex function of the input and
optimal trajectories can be found even for large systems.

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



Example
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
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clearance rate δ = 0.24 day−1, mutation rate µ = 10−4 day−1

and replication rates for viral variants and therapies as follows

Variant Therapy 1 Therapy 2 Therapy 3

Wild type (x1) D11 = 0.05 D21 = 0.10 D31 = 0.30
Genotype 1 (x2) D12 = 0.25 D22 = 0.05 D32 = 0.30
Genotype 2 (x3) D13 = 0.10 D23 = 0.30 D33 = 0.30
HR type (x4) D14 = 0.30 D24 = 0.30 D34 = 0.15
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Example

Optimized drug doses:

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [days]

 

 
u1
u2
u3

Total virus population:

0 20 40 60 80 100 120 140 160 180 200
10-2

10-1

100

101

102

103

time [days]

 

 
time-varying
constant

Anders Rantzer, LCCC Linnaeus center Scalable Control of Positive Systems



For Scalable Control — Use Positive Systems!

Verification and synthesis scale linearly

Distributed controllers by linear programming

No need for global information

Optimal trajectiories by convex optimization
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Many Research Challenges Remain

Optimal Dynamic Controllers in Positive Systems

Analyze Trade-off Between Performance and Scalability

Distributed Controllers for Nonlinear Monotone Systems
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Thanks!

Enrico Vanessa Daria Martina
Lovisari Jonsson Madjidian Maggio

Alessandro Bo Fredrik
Papadopoulos Bernhardsson Magnusson
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