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Given input and output data ZN = {y(t), u(t)}Nt=1 from a SISO
system.

■ Estimate a predictor (a model) ŷ(t|t− 1, θ) for y(t), where θ is a
vector of unknown parameters.

■ Let a probabilistic model be given as

y(t) = ŷ(t|t− 1, θ) + ε(t, θ)

where ε(t, θ) has PDF fe(x, t; θ) (independent).
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The likelihood function is given by

f(θ, ZN ) =
N
∏

t=1

fe(ε(t, θ), t; θ)

This gives the maximum likelihood estimate

θ̂ML = argmax
θ

log f(θ, ZN ) = argmin
θ

1

N

N
∑

t=1

− log fe(ε, t; θ)

Remark: This holds strictly only if the predictor is stable.
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Hence, ML can be expressed as using prediction errors

ε(t, θ) = y(t)− ŷ(t|t− 1; θ), t = 1, . . . , N, (1)

a loss function VN (θ):

VN (θ) = most cases =
1

N

N
∑

t=1

ε2(t, θ) (2)

where the last equality holds if fe is Gaussian, which is a common
assumption.
We thus have:

θ̂N = arg min
θ∈DM

VN (θ) (3)
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This is optimization. Standard methods are available.
Given an initial estimate θ0, iterate

θ(i+1) = θ(i) − µiRi
dVN (θ)

dθ

until the minimum is reached.
µi is a step length to assure downhill steps, and Ri is a matrix to
modify the search direction.



To successfully compute the ML estimate

Chalmers/VUB Jonas Sjöberg – 7

■ To have good data {y(t), u(t)}Nt=1

■ To find a good model structure.
■ To obtain a good initial parameter estimate for the numerical search!

A huge amount of research has been done on this, but often described in partly
different way. Too many references to be listed here.

Linear SI: Instrumental variable methods (older) and Subspace identification
methods (newer) are often used as initial estimates.

■ P. Stoica, T. Söderström and B. Friedlander, Optimal instrumental variable
estimates of the AR parameters of an ARMA process, IEEE Trans. Automatic
Control, Vol. AC-30, No. 11, November 1985.

■ Vector ARMA estimation: A reliable subspace approach J Mari, P Stoica, T
McKelvey - IEEE Transactions on Signal Processing, 2000.

[
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A lot of work has been published on methods to initialize
block-based nonlinear models:

Wiener model:

G
1
HqL

uHtL y
`

HtL

Hammerstein model:

G
1
HqL

uHtL y
`

HtL

Hammerstein-Wiener model:

G
1
HqL

uHtL y
`

HtL

Wiener-Hammerstein model:

G
1
HqL G

2
HqL

uHtL y
`

HtL

In the following, algorithms for Wiener-Hammerstein models are
considered.



Wiener-Hammerstein model on state space form
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These can all be represented as state-space models , eg, the Wiener-Hammerstein
model:

G
1
HqL G

2
HqL

uHtL y
`

HtL

x(t+ 1) =

(

A1 0
0 A2

)

x(t) +

(

B1

0

)

u(t) +

(

0
B2

)

f(θ, [C1 0]x(t))

ŷ(t) =
(

0 C2

)

x(t)

When is this a linear regression problem?

■ If G1 and G2 are given and if the nonlinearity is linearly parameterized.
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z(t) = G1(q
−1, α)u(t)

x(t) = f(β, z(t)) (4)

ŷ(t) = G2(q
−1, γ)x(t) + ν(t)

ŷ(t) is the prediction, and G1(q
−1, α) and G2(q

−1, γ) are LTI transfer
functions in q−1, and parameterized with α and γ, respectively.
All parameters of the model structure are stored in a common
parameter vector

θ = [α, β, γ]. (5)
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Lemma 1 Suppose the input data u(t) is a stationary normal
distributed sequence and the output y(t) is obtained by filtering u(t)
through a system of form (4) with linear parts G0

1 and G0
2 being

stable, single input, single output finite order transfer functions, and
the nonlinear part f0 is a continuous function ℜ → ℜ. Then best
linear approximation (BLA), converge to

κG0
1(q

−1)G0
2(q

−1) (6)

where κ is a constant which value depends on u(t), f0, G0
1 and G0

2.

Proof: See Pintelon, R. and Schoukens, J. (2001). System
Identification: A Frequency Domain Approach. IEEE-press,
Piscataway.



Algorithm

Outline
The Maximum
Likelihood Method

Success with ML

Est W and H Models

Algorithm

Alternative 1: Offer
all poles and zeros on
both sides
Alternative 2: Offer
all poles and zeros on
both sides
Alternative 3: Offer
all poles and zeros on
both sides

Example

Chalmers/VUB Jonas Sjöberg – 12

■ Start with the best linear model G(z).
■ Split the linear model into G1(z) and G2(z) so that

G(z) = G1(z)G2(z)
■ LS fitting of linear parameters.
■ Fit all parameters of the models.

How should the dynamic be split?
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■ Split the linear model into G1(z) and G2(z) in all possible ways.

Sjöberg, J. och Schoukens, J. Initializing Wiener-Hammerstein
models based on partitioning of the best linear approximation.
Automatica, Vol. 48 (2012), 2, p. 353-359.

■ Brute force approach.
■ Correct division of poles and zeros is within the set of models.
■ Computational aspect: feasible up to model order approximately

10.
■ Better than all other method published up to then (which are all

more complicated).
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■ Internal signals z and x

z(t) = G1 u(t) (7)

x(t) = G−1
2 y(t).

■ Static nonlinearity as a concatenation of two functions f1 and f2

f(x) = f−1
2 (f1(x)). (8)
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■ Then, neglecting the influence of disturbances one obtains

f1(G1 u(t)) = f2(G
−1
2 y(t)) (9)

solved approximately as a linear-in-the-parameters TLS problem.
■ Ĝ1 and Ĝ−1

2 as linear combination of basis functions containing
the poles and the zeros of GBLA, respectively.

J. Sjöberg, L. Lauwers, J. Schoukens, Identification of
Wiener-Hammerstein models: Two algorithms based on the best split
of a linear model applied to the SYSID’09 benchmark problem.,
Control Engineering Practice, Volume 20, Issue 11, November 2012,
Pages 1119-1125.
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Parameterize poles and zeros on both sides: βk and (1− βk),
respectively. Same thing with αk.

G1 =

∏nB

k=1(1− zk z
−1)βk

∏nA

k=1(1− pk z−1)αk

G2 =

∏nB

k=1(1− zk z
−1)(1−βk)

∏nA

k=1(1− pk z−1)(1−αk)

■ Transformations between time- and frequency domain.
■ The fractional power is calculated in frequency domain.
■ The nonlinearity is calculated in time domain
■ If nonlinear function is linear parameterized then a nonlinear

minimization in βk and αk.

L. Vanbeylen, A fractional approach to identify Wiener-Hammerstein
systems. Automatica, vol.50, n. 3, 2014, pp.903-909.
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In time domain: Taylor expand poles and zeros of G(z).
5th order expansion of one pole

1
(

1− 0.8
z

)α ≈ 1 +
0.8α

z
+

(

α2

2
+

α

2

)(

0.8

z

)2

+

(

α3

6
+

α2

2
+

α

3

)(

0.8

z

)3

+

(

α4

24
+

α3

4
+

11α2

24
+

α

4

)(

0.8

z

)4

+

(

α5

120
+

α4

12
+

7α3

24
+

5α2

12
+

α

5

)(

0.8

z

)5

+O

(

(

0.8

z

)6
)

Parameters indicating zero-pole position can, hence, be estimated.

Problem: Although number of parameter is not high, we have
computational problems due to huge symbolic expressions when
several poles and zeros are considered.
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Consider 2 poles
1

(

1− 0.8
z

)α1

1
(

1− 0.4
z

)α2

The coefficient of z−3 becomes:

0.085α3
1 + 0.13α2α

2
1 + 0.26α2

1 + 0.064α2
2α1

+ 0.19α2α1 + 0.17α1 + 0.011α3
2 + 0.032α2

2 + 0.021α2
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Possibilities:

■ Set αk → α, this reduce complexity but it not enough.
■ Re-parameterize: replace complex expressions with new

parameters

0.085α3
1 + 0.13α2α

2
1 + 0.26α2

1 + 0.064α2
2α1

+ 0.19α2α1 + 0.17α1 + 0.011α3
2 + 0.032α2

2 + 0.021α2 → αnew

for some, or all, coefficients. After in a second step the regional
parameters indicating zero-pole position can be estimated from
αnew.

...and on this we are working.



Estimating Wiener-Hammerstein Models

Outline
The Maximum
Likelihood Method

Success with ML

Est W and H Models

Algorithm

Alternative 1: Offer
all poles and zeros on
both sides
Alternative 2: Offer
all poles and zeros on
both sides
Alternative 3: Offer
all poles and zeros on
both sides

Example

Chalmers/VUB Jonas Sjöberg – 20

Example based on the benchmark data from SYSID 2009. Joint work
with Johan Schoukens.

Data generated with an electronic nonlinear circuit with
Wiener-Hammerstein structure. The two linear subsystems are of
third order.

G
1
HqL G

2
HqL

uHtL y
`

HtL

■ General structure is known.
■ Nonlinearity unknown.
■ 100 000 estimation data
■ 80 000 validation data.

Part of Time domain data:

50 100 150 200 250 300

-1.5

-1.0

-0.5

0.5

1.0

1.5



Outline
The Maximum
Likelihood Method

Success with ML

Est W and H Models

Algorithm

Alternative 1: Offer
all poles and zeros on
both sides
Alternative 2: Offer
all poles and zeros on
both sides
Alternative 3: Offer
all poles and zeros on
both sides

Example

Chalmers/VUB Jonas Sjöberg – 21

Input spectra:

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

Output spectra:

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

1.2

Output spectra, close up:

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

6th order linear model: RMS
error 43 mV. Poles and zeros:

o

o
o

o

x

x
x

x

x

x
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

one zero at 3.5



Algorithm

Outline
The Maximum
Likelihood Method

Success with ML

Est W and H Models

Algorithm

Alternative 1: Offer
all poles and zeros on
both sides
Alternative 2: Offer
all poles and zeros on
both sides
Alternative 3: Offer
all poles and zeros on
both sides

Example

Chalmers/VUB Jonas Sjöberg – 22

■ Start with the best linear model G(z).
■ Split the linear model into all possible G1(z) and G2(z) so that

G(z) = G1(z)G2(z)
■ LS fitting of linear parameters in the nonlinearity as initialization.
■ Order the initialized models with respect to their initial fit.
■ Fit all parameters of the best, or some of the best models.
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■ Constraint: linear subsystem order ≥ 1 gives 42 possible
splittings.

■ Nonlinearity: first order spline with 8 knots. Knot position
initialized giving equally many data points in each interval. The
linear spline parameters fitted with LS (=fast).

o

o
o

o

x

x
x

x

x

x
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0 Sorted RMS error of the 42
initializations.

10 20 30 40

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Best initialized Wiener Hammerstein model 6.4 mV
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Minimize MSE for all 42 models, ie, apply the iterative minimization
θ̂(i+1) = θ̂(i) − µRi

dV
dθ

.
Result
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0.001

0.002
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■ Best initialized model also best after minimization.
■ Some good initializations converge to bad minima.???
■ Some bad initializations converge to good minima.???



Look at poles and zeros for the two linear parts before

and after minimization.
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Best initialization
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Second linear partFirst linear part

Initialization

After fitting

Third best initialization
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xxx
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40th best initialization (third worst)
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Initialization

After training

First linear part Second linear part
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Look at the RMS errors again
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Sort the models with respect to RMS
error after minimization
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Close up on the 15 best models:
Number of poles in first linear part:

33 33 33 33 33 33 33 33 33

33 33 33 33
33

33

2 4 6 8 10 12 14

0.0002
0.0004
0.0006
0.0008
0.0010

Number of zeros in first linear part:

22 33 22 22 22 22 22 33 33

22 33 33 22
33

33

2 4 6 8 10 12 14

0.0002
0.0004
0.0006
0.0008
0.0010
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o oooo oo ooooo oo oooo
o
oo

o

o

o

o

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

oo

o

o

o

o

o

o

x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx
x
xx-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0



Best model

Outline
The Maximum
Likelihood Method

Success with ML

Est W and H Models

Algorithm

Alternative 1: Offer
all poles and zeros on
both sides
Alternative 2: Offer
all poles and zeros on
both sides
Alternative 3: Offer
all poles and zeros on
both sides

Example

Chalmers/VUB Jonas Sjöberg – 29
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Chalmers/VUB Jonas Sjöberg – 30

■ 30 parameters, 17 for the linear spline
■ RMS on validation data: 0.31 mV

Can be compared to the best results at SYSID’09:

■ Johan Paduart et. al, 0.42mv (polynomial state space model,
797 parameters)

■ Wills & Ninnes , 0.49 mV (Same structure as presented here, but
not using linear model for initialization).

4 of the models obtained from the linear model are better than J.
Paduart’s, 9 are better than Wills & Ninnes.
Additional step: add more flexibility to the nonlinear part, 8 knots to
24 knots, 0.27 mV RMS, estimated noise level 0.19 mV.
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■ Depending on initialization the solution ends up in different local
minima.

■ The number of poles and zeros in the linear subsystems most
important for a good model.

■ Correct division of the poles and zeros positions gives better
initialization.

■ With a consistent linear model, the best division of poles and
zeros can be obtained from the fit of the initialized
Wiener-Hammerstein models.
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