# Learning Control for Air Hockey Striking using Deep Reinforcement Learning

#### Ayal Taitler, Nahum Shimkin

Faculty of Electrical Engineering Technion - Israel Institute of Technology

May 8, 2017

### Overview



#### Introduction

- Reinforcement Learning
- Q-Learning
- Deep Reinforcement Learning

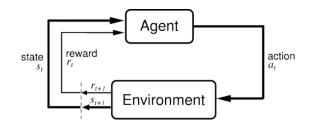
#### The Air Hockey Striking Problem

- Goals
- The Optimal Control Problem
- The RI Formulation
- DQN for Air Hockey
- Guided-DQN components
- Results



At each time step t:

- Agent and environment in state  $s_t$
- Interpretation of the agent executes action at in the environment
- The environment transitions to state s<sub>t+1</sub> according to a<sub>t</sub> and s<sub>t</sub>
- The agent observes state s<sub>t+1</sub> and receives reward r<sub>t</sub>
- **(a)** t = t + 1 and set  $s_t = s_{t+1}$



The RL goal is to maximize the expected accumulative reward:

RL Objective

 
$$\max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{t=0}^{T} \gamma^{t} r_{t} \right], \quad \pi : S \to \mathcal{A}$$

The model is defined for the tuple <2, , ,  $\mathcal{P},$  r>, where

- $\textcircled{O} \ \mathcal{A} \ \text{-} \ \mathsf{Action} \ \mathsf{space}$
- 2 S State space; initial state  $s_0$
- **3**  $\mathcal{P}$  Transition model; P(s'|s, a)
- r Reward ;  $r_t = r(s_t, a_t)$
- **(3)**  $\gamma$  Discount factor

# Q-Learning, Watkins (1989)

- Q-Learning a learning version of the value iteration algorithm.
- At each step  $s_t$ , choose the action  $a_t$  which maximizes the function  $Q(s_t, a_t)$ .
  - Q is the estimated state-action value function it tells us how good an action is given a certain state.

• Formally: 
$$Q(s_t, a_t) = r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a)$$

# Q-Learning, Watkins (1989)

- Q-Learning a learning version of the value iteration algorithm.
- At each step  $s_t$ , choose the action  $a_t$  which maximizes the function  $Q(s_t, a_t)$ .
  - Q is the estimated state-action value function it tells us how good an action is given a certain state.
- Formally:  $Q(s_t, a_t) = r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a)$
- The state-action value function can also be learned from off-policy samples  $< s_t, a_t, r_t, s_{t+1} >$

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{old \ value} + \underbrace{\alpha}_{learning \ rate} \left[ \underbrace{r_t + \gamma \max_a Q(s_{t+1}, a)}_{target} - \underbrace{Q(s_t, a_t)}_{old \ value} \right]$$

Selected action: π(s) = argmax<sub>a</sub> Q(s, a) + E
E - Exploration

# Deep Q-Learning

- State-action transitions  $\langle s, a, r, s' \rangle$  are sampled from
  - Full episodes roll-outs
  - Distribution function over an external memory

$$r = r(s, a), \quad s' \sim P(\cdot|s, a)$$

# Deep Q-Learning

- State-action transitions < s, a, r, s' > are sampled from
  - Full episodes roll-outs
  - Distribution function over an external memory

$$r = r(s, a), \quad s' \sim P(\cdot|s, a)$$

• The state-action value function can be approximated by a neural network (parametric function approximator)

$$Q^{\pi}(s,a) pprox Q(s,a; heta)$$

# Deep Q-Learning

- State-action transitions  $\langle s, a, r, s' \rangle$  are sampled from
  - Full episodes roll-outs
  - Distribution function over an external memory

$$r = r(s, a), \quad s' \sim P(\cdot|s, a)$$

• The state-action value function can be approximated by a neural network (parametric function approximator)

$$Q^{\pi}(s,a)pprox Q(s,a; heta)$$

• Define the objective function to be the MSE of the Temporal Difference error

$$\mathcal{L}(\theta) = \mathbb{E}_{s,a,r,s' \sim P} \left[ \left( \underbrace{r + \gamma \max_{a'} Q(s',a';\theta)}_{target} - \underbrace{Q(s,a;\theta)}_{prediction} \right)^2 \right]$$

### DQN & Double DQN Learning Rule, Van Hasselt et al. (2016)

- In order to reduce oscillation and increase stability, we use
  - Experience replay buffer  $\mathcal{D}$
  - Additional freezed target Q-network  $Q(s,a;\hat{ heta}^-)$

$$\mathcal{L}^{DQN}(\theta) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}}\left[\left(r + \gamma \max_{a'} Q(s',a';\hat{\theta}^{-}) - Q(s,a;\theta)\right)^2\right]$$

• Periodically update parameters  $\hat{\theta}^- \leftarrow \theta$ 

### DQN & Double DQN Learning Rule, Van Hasselt et al. (2016)

- In order to reduce oscillation and increase stability, we use
  - Experience replay buffer  ${\cal D}$
  - Additional freezed target Q-network  $Q(s,a;\hat{ heta}^-)$

$$\mathcal{L}^{DQN}(\theta) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}}\left[\left(r + \gamma \max_{a'} Q(s',a';\hat{\theta}^{-}) - Q(s,a;\theta)\right)^2\right]$$

- Periodically update parameters  $\hat{\theta}^- \leftarrow \theta$
- To reduce value overestimation we decouple the action selection from the action evaluation yielding

$$\mathcal{L}^{DDQN}(\theta) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}} \left[ \left( r + \gamma Q(s', a'; \hat{\theta}^{-}) - Q(s, a; \theta) \right)^2 \right]$$
$$a' = \operatorname*{argmax}_{a} Q(s', a; \theta)$$

# Deep Q-Network Learning Scheme

Initialize:

- $\textbf{0} \quad \text{Experience replay buffer } \mathcal{D}$
- 2 Online network with weights  $\theta$
- **③** Target network with weights  $\hat{\theta}^- \leftarrow \theta$

Start at state  $s_0$  and repeat for M steps

- In state  $s_t$  execute action  $a_t = \max_{a} Q(s_t, a; \theta) / \exp[ore$
- 2 Observe reward  $r_t$  and new state  $s_{t+1}$
- **③** Store transition  $\langle s_t, a_t, r_t, s_{t+1} \rangle$  in experience replay buffer D
- Sample uniformly N transitions from  $\mathcal D$
- **(**) Update Q-network  $Q(s, a; \theta)$  according to  $\mathcal{L}(\theta)$
- $I Set s_t \leftarrow s_{t+1}$
- update target Q-network with  $\hat{\theta}^- \leftarrow \theta$  every C steps

### The Air Hockey Physical Setup

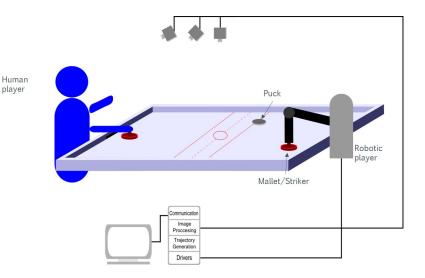


Image: A matrix

- 4 ⊒ →

### Air Hockey Striking Problem Formulation

#### Goal

Finding a policy for the agent to strike the puck (skill), such that the puck will move in a desired attack pattern

### Air Hockey Striking Problem Formulation

#### Goal

Finding a policy for the agent to strike the puck (skill), such that the puck will move in a desired attack pattern

#### Assumptions:

- Puck is stationary
- The Agent has known physical limitations
- The agent's physical model and puck-mallet collision model are unknown

#### Goal

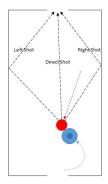
Finding a policy for the agent to strike the puck (skill), such that the puck will move in a desired attack pattern

#### Assumptions:

- Puck is stationary
- The Agent has known physical limitations
- The agent's physical model and puck-mallet collision model are unknown

Requirements:

- Maximum velocity after impact (puck)
- Puck is aimed to the center of the goal
- Puck's trajectory according to the selected skill



# Agent's Dynamics

State space:

• Combination of the agent's (m) and puck's (p) positions and velocities

$$s_t = \begin{bmatrix} m_x, m_{Vx}, m_y, m_{Vy}, p_x, p_{Vx}, p_y, p_{Vy} \end{bmatrix}^T$$

- 一司

# Agent's Dynamics

State space:

• Combination of the agent's (m) and puck's (p) positions and velocities

$$s_t = \begin{bmatrix} m_x, m_{Vx}, m_y, m_{Vy}, p_x, p_{Vx}, p_y, p_{Vy} \end{bmatrix}^T$$

Action Space:

- Acceleration commands (motor torques)  $\begin{bmatrix} a_x, a_y \end{bmatrix}^{\Gamma}, |a_{x,y}| \le A_{max}$
- Discretized in order to fit the Q-networks scheme
- Boundary and zero actions are taken (among other) to include the known Bang-Zero-Bang profile

$$A = \begin{bmatrix} -A_{max}, \ -A_{max}/2, \ 0, \ A_{max}/2, \ A_{max} \end{bmatrix}^2$$

# Agent's Dynamics

State space:

• Combination of the agent's (m) and puck's (p) positions and velocities

$$s_{t} = \begin{bmatrix} m_{x}, m_{Vx}, m_{y}, m_{Vy}, p_{x}, p_{Vx}, p_{y}, p_{Vy} \end{bmatrix}^{T}$$

Action Space:

- Acceleration commands (motor torques)  $\begin{bmatrix} a_x, a_y \end{bmatrix}^T$ ,  $|a_{x,y}| \le A_{max}$
- Discretized in order to fit the Q-networks scheme
- Boundary and zero actions are taken (among other) to include the known Bang-Zero-Bang profile

$$A = \begin{bmatrix} -A_{max}, \ -A_{max}/2, \ 0, \ A_{max}/2, \ A_{max} \end{bmatrix}^2$$

Simulation dynamical model:

- 2-D 2<sup>nd</sup> order kinematics (integrator) with constraints
- Collision models are ideal, with restitution coefficient e = 0.99

# Time Optimal Control Formulation

#### Control problem

$$\begin{array}{ll} \underset{a_{k}}{\text{minimize}} & \phi(s_{T}) + \sum_{t=1}^{T} 1\\ \text{subject to} & s_{k+1} = f(s_{k}, a_{k})\\ & s_{k}^{(i)} \in [S_{min}^{(i)}, S_{max}^{(i)}], \quad i = 1, \dots, 8\\ & a_{k}^{(j)} \in [A_{min}^{(j)}, A_{max}^{(j)}], \quad j = 1, 2\\ & s_{0} = s(0) \end{array}$$

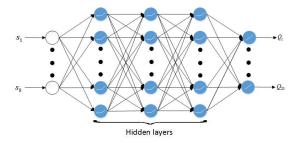
- $\phi(s_T)$  is the constraint on the final condition
- $f(s_k, a_k)$  is the physical model
- $S_{min/max}$ ,  $A_{min/max}$  are constraints on the space and actions respectively
- $s_0, s_T$  are the initial and final conditions
- The collision model is embedded within the state and final condition

A. Taitler, N. Shimkin (Technion)

May 8, 2017 12 / 24

### The NN Controller

- Input physical state vector of the game, i.e position and velocities
  - $s_t \in \mathbb{R}^8$
- Output 25 Q values (5 actions in each axis)
- Network Feedforward Neural Network with 4 Layers



Activations - ReLU

### **Reward Definition**

#### **Reward Function**

 $\begin{cases} r_t = -r_{time} & \text{if } s_t \text{ is not terminal} \\ r_t = r_c + r_v + r_d & \text{if } s_t \text{ is terminal} \end{cases}$ 

#### **Reward Function**

 $\begin{cases} r_t = -r_{time} & \text{if } s_t \text{ is not terminal} \\ r_t = r_c + r_v + r_d & \text{if } s_t \text{ is terminal} \end{cases}$ 

- $r_c$  is a reward given for striking the puck
- $r_v$  is a reward for maximal velocity in the direction of the goal

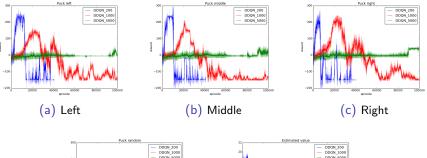
$$r_v = \operatorname{sign}(V) \cdot V^2$$

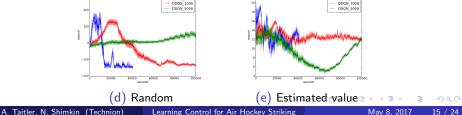
• *r<sub>d</sub>* is a reward for the puck reaching the desired point at the opponent's goal

$$r_d = \begin{cases} c & |x - x_g| \le w \\ c \cdot e^{-d(|x - x_g| - w)} & |x - x_g| > w \end{cases}$$

# Double DQN

Applying the DQN scheme to the air hockey problem (testing for different update periods)





### Challenges

Observations:

- DQN takes a long time to start to rise (no feature learning)
- Best policy learned is suboptimal
- Sharp drop in score values obtaining oscillating policy
- Average value is noisy and oscillating
- Learning error (TD) diverges
- DQN is very inconsistent

# Challenges

Observations:

- DQN takes a long time to start to rise (no feature learning)
- Best policy learned is suboptimal
- Sharp drop in score values obtaining oscillating policy
- Average value is noisy and oscillating
- Learning error (TD) diverges
- DQN is very inconsistent
- Possible explanations:
  - Continuous state space
  - Physical model dynamics
  - Lack of rewards



### Exploration/Exploitation in Continuous Domains

•  $\epsilon$ -greedy

$$a_t = \begin{cases} a_t^* & \text{with probability } 1 - \epsilon \\ random action & \text{with probability } \epsilon \end{cases}$$

Local Exploration

$$a_t = a_t^* + \mathcal{N}_t$$

 $\mathcal{N}_t$  - temporally correlated random process

# Exploration/Exploitation in Continuous Domains

•  $\epsilon$ -greedy

$$a_t = \begin{cases} a_t^* & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases}$$

Local Exploration

$$a_t = a_t^* + \mathcal{N}_t$$

- $\mathcal{N}_t$  temporally correlated random process
- $\epsilon$ -greedy gets filtered in physical systems with inertia, the system functions as a low pass filter
- Local exploration needs to be around the optimum to work

#### Learning Guidance with On-line Demonstrations

- Combine knowledge with present experience mechanism for one stage learning
  - With probability ε<sub>p</sub> instruct the agent to act according to π(s) for a full episode
  - Store transitions in replay buffer for learning

### Learning Guidance with On-line Demonstrations

- Combine knowledge with present experience mechanism for one stage learning
  - With probability  $\epsilon_p$  instruct the agent to act according to  $\pi(s)$  for a **full episode**
  - Store transitions in replay buffer for learning
- Acting scheme:

with probability  $\epsilon_p$  perform a guided episode

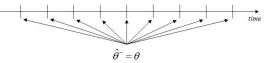
$$a_t = \pi_g(s_t)$$

with probability  $1-\epsilon_{\it p}$  act according to the E/E scheme

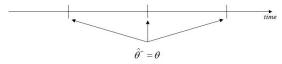
$$a_{t} = \begin{cases} \max_{a} Q(s_{t}, a) + \mathcal{N}_{t} & \text{with probability } 1 - \epsilon \\ random \text{ action} & \text{with probability } \epsilon \end{cases}$$

### Fixed Target Update

- Samples in the replay buffer (dataset) are not stationary.
  - Fast updates can follow changes rapidly, but may diverge

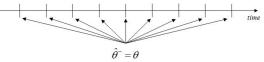


• Slow updates can filter unstable changes, but may miss entire events

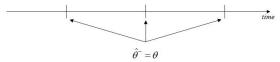


### Fixed Target Update

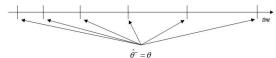
- Samples in the replay buffer (dataset) are not stationary.
  - Fast updates can follow changes rapidly, but may diverge



• Slow updates can filter unstable changes, but may miss entire events

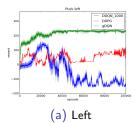


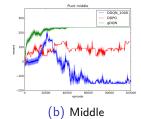
• Every update set:  $C = C \cdot C_r, \quad C_r \ge 1$ 

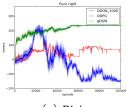


• C – update rate

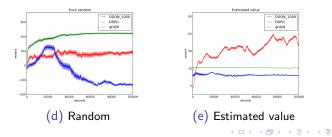
#### GDQN, Double DQN and Deep Deterministic Policy Gradients (DDPG)







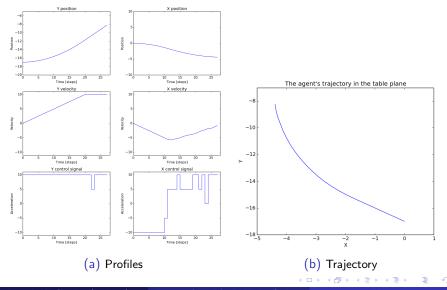
(c) Right



A. Taitler, N. Shimkin (Technion) Learning Co

Learning Control for Air Hockey Striking

### Control Profile and Trajectory



A. Taitler, N. Shimkin (Technion)

Learning Control for Air Hockey Striking

May 8, 2017 21 / 24

# **OpenAl Striking Simulation**

A. Taitler, N. Shimkin (Technion) Learning Control for Air Hockey Striking

# Summary

- Conclusion
  - Formalizing an optimal control problem as a learning problem.
  - Combining different methods of exploration.
  - Injecting prior knowledge into the exiting learning form experience framework.
  - Addressing the problem of non-stationarity in experience.
- Future Work
  - Extending the setting for a moving puck.
  - Extending the learning scheme for continuous actions.
  - Implementing the learning algorithm in physical environment.



# Thank You

- 一司