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The Reinforcement Learning Setup

At each time step t:

1 Agent and environment in state st
2 The agent executes action at in the environment

3 The environment transitions to state st+1 according to at and st
4 The agent observes state st+1 and receives reward rt
5 t = t + 1 and set st = st+1
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RL Components

The RL goal is to maximize the expected accumulative reward:

RL Objective

max
π

Eπ
[

T∑
t=0

γtrt

]
, π : S → A

The model is defined for the tuple <S, A, P, r>, where

1 A - Action space

2 S - State space; initial state s0
3 P - Transition model; P(s ′|s, a)

4 r - Reward ; rt = r(st , at)

5 γ - Discount factor
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Q-Learning, Watkins (1989)

Q-Learning - a learning version of the value iteration algorithm.

At each step st , choose the action at which maximizes the function
Q(st , at).

Q is the estimated state-action value function it tells us how good an
action is given a certain state.

Formally: Q(st , at) = r(st , at) + γmaxa Q(st+1, a)

The state-action value function can also be learned from off-policy
samples < st , at , rt , st+1 >

Q(st , at)← Q(st , at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

[
rt + γmax

a
Q(st+1, a)︸ ︷︷ ︸

target

−Q(st , at)︸ ︷︷ ︸
old value

]

Selected action: π(s) = argmaxa Q(s, a) + E
E – Exploration
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Deep Q-Learning

State-action transitions < s, a, r , s ′ > are sampled from
Full episodes roll-outs
Distribution function over an external memory

r = r(s, a), s ′ ∼ P(·|s, a)

The state-action value function can be approximated by a neural
network (parametric function approximator)

Qπ(s, a) ≈ Q(s, a; θ)

Define the objective function to be the MSE of the Temporal
Difference error

L(θ) = Es,a,r ,s′∼P

[(
r + γmax

a′
Q(s ′, a′; θ)︸ ︷︷ ︸

target

−Q(s, a; θ)︸ ︷︷ ︸
prediction

)2]
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DQN & Double DQN Learning Rule, Van Hasselt et al. (2016)

In order to reduce oscillation and increase stability, we use

Experience replay buffer D
Additional freezed target Q-network Q(s, a; θ̂−)

LDQN(θ) = Es,a,r ,s′∼D

[(
r + γmax

a′
Q(s ′, a′; θ̂−)− Q(s, a; θ)

)2]

Periodically update parameters θ̂− ← θ

To reduce value overestimation we decouple the action selection from
the action evaluation yielding

LDDQN(θ) = E s,a,r ,s′∼D

[(
r + γQ(s ′, a′; θ̂−)− Q(s, a; θ)

)2]
a′ = argmax

a
Q(s ′, a; θ)

A. Taitler, N. Shimkin (Technion) Learning Control for Air Hockey Striking May 8, 2017 7 / 24



DQN & Double DQN Learning Rule, Van Hasselt et al. (2016)

In order to reduce oscillation and increase stability, we use

Experience replay buffer D
Additional freezed target Q-network Q(s, a; θ̂−)

LDQN(θ) = Es,a,r ,s′∼D

[(
r + γmax

a′
Q(s ′, a′; θ̂−)− Q(s, a; θ)

)2]

Periodically update parameters θ̂− ← θ

To reduce value overestimation we decouple the action selection from
the action evaluation yielding

LDDQN(θ) = E s,a,r ,s′∼D

[(
r + γQ(s ′, a′; θ̂−)− Q(s, a; θ)

)2]
a′ = argmax

a
Q(s ′, a; θ)

A. Taitler, N. Shimkin (Technion) Learning Control for Air Hockey Striking May 8, 2017 7 / 24



Deep Q-Network Learning Scheme

Initialize:

1 Experience replay buffer D
2 Online network with weights θ

3 Target network with weights θ̂− ← θ

Start at state s0 and repeat for M steps

1 In state st execute action at = max
a

Q(st , a; θ) / explore

2 Observe reward rt and new state st+1

3 Store transition < st , at , rt , st+1 > in experience replay buffer D
4 Sample uniformly N transitions from D
5 Update Q-network Q(s, a; θ) according to L(θ)

6 Set st ← st+1

7 update target Q-network with θ̂− ← θ every C steps

A. Taitler, N. Shimkin (Technion) Learning Control for Air Hockey Striking May 8, 2017 8 / 24



The Air Hockey Physical Setup
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Air Hockey Striking Problem Formulation

Goal

Finding a policy for the agent to strike the puck (skill), such that the puck
will move in a desired attack pattern

Assumptions:

Puck is stationary

The Agent has known physical limitations

The agent’s physical model and puck-mallet
collision model are unknown

Requirements:

Maximum velocity after impact (puck)

Puck is aimed to the center of the goal

Puck’s trajectory according to the selected skill
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Agent’s Dynamics

State space:

Combination of the agent’s (m) and puck’s (p) positions and
velocities

st =
[
mx , mVx , my , mVy , px , pVx , py , pVy

]T

Action Space:

Acceleration commands (motor torques)
[
ax , ay

]T
, |ax ,y | ≤ Amax

Discretized in order to fit the Q-networks scheme

Boundary and zero actions are taken (among other) to include the
known Bang-Zero-Bang profile

A =
[
− Amax , −Amax/2, 0, Amax/2, Amax

]2
Simulation dynamical model:

2-D 2nd order kinematics (integrator) with constraints

Collision models are ideal, with restitution coefficient e = 0.99
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Time Optimal Control Formulation

Control problem

minimize
ak

φ(sT ) +
T∑
t=1

1

subject to sk+1 = f (sk , ak)

s
(i)
k ∈ [S

(i)
min, S

(i)
max ], i = 1, . . . , 8

a
(j)
k ∈ [A

(j)
min,A

(j)
max ], j = 1, 2

s0 = s(0)

φ(sT ) is the constraint on the final condition
f (sk , ak) is the physical model
Smin/max , Amin/max are constraints on the space and actions
respectively
s0, sT are the initial and final conditions
The collision model is embedded within the state and final condition
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The NN Controller

Input - physical state vector of the game, i.e position and velocities

st ∈ R8

Output - 25 Q values (5 actions in each axis)

Network - Feedforward Neural Network with 4 Layers

Activations - ReLU
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Reward Definition

Reward Function{
rt = −rtime if st is not terminal

rt = rc + rv + rd if st is terminal

rc is a reward given for striking the puck

rv is a reward for maximal velocity in the direction of the goal

rv = sign(V ) · V 2

rd is a reward for the puck reaching the desired point at the
opponent’s goal

rd =

{
c |x − xg | ≤ w

c · e−d(|x−xg |−w) |x − xg | > w
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Double DQN

Applying the DQN scheme to the air hockey problem
(testing for different update periods)

(a) Left (b) Middle (c) Right

(d) Random (e) Estimated value
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Challenges

Observations:

DQN takes a long time to start to rise (no feature learning)

Best policy learned is suboptimal

Sharp drop in score values - obtaining oscillating policy

Average value is noisy and oscillating

Learning error (TD) diverges

DQN is very inconsistent

Possible explanations:

Continuous state space

Physical model dynamics

Lack of rewards
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Exploration/Exploitation in Continuous Domains

ε-greedy

at =

{
a∗t with probability 1− ε
random action with probability ε

Local Exploration
at = a∗t +Nt

Nt - temporally correlated random process

ε-greedy gets filtered in physical systems with inertia, the system
functions as a low pass filter

Local exploration needs to be around the optimum to work
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Learning Guidance with On-line Demonstrations

Combine knowledge with present experience mechanism for one stage
learning

1 With probability εp instruct the agent to act according to π(s) for a
full episode

2 Store transitions in replay buffer for learning

Acting scheme:
with probability εp perform a guided episode

at = πg (st)

with probability 1− εp act according to the E/E scheme

at =

{
max
a

Q(st , a) +Nt with probability 1− ε

random action with probability ε
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Fixed Target Update

Samples in the replay buffer (dataset) are not stationary.

Fast updates can follow changes rapidly, but may diverge

Slow updates can filter unstable changes, but may miss entire events

Every update set: C = C · Cr , Cr ≥ 1

C – update rate
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Guided-DQN

GDQN, Double DQN and Deep Deterministic Policy Gradients (DDPG)

(a) Left (b) Middle (c) Right

(d) Random (e) Estimated value
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Control Profile and Trajectory

(a) Profiles (b) Trajectory
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Learning Simulation

OpenAI Striking Simulation

A. Taitler, N. Shimkin (Technion) Learning Control for Air Hockey Striking May 8, 2017 22 / 24



Summary

Conclusion
Formalizing an optimal control problem as a learning problem.

Combining different methods of exploration.

Injecting prior knowledge into the exiting learning form experience
framework.

Addressing the problem of non-stationarity in experience.

Future Work
Extending the setting for a moving puck.

Extending the learning scheme for
continuous actions.

Implementing the learning algorithm in
physical environment.
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Thats All Folks!

Thank You
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