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Introduction

Vibration control.
Structural control - a branch of vibration control. Exploits control
theory to enhance dynamic response of structures. Mostly those
induced by winds, earthquakes and man.

Ji-Ji earthquake
Taiwan, 1999

Man induced vibration

Common structural control realization consists of mechanical
actuators which apply forces to the vibrating structure.
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Introduction

A simplified block diagram of a controlled structure:

Plant

Actuator

Controller Sensors

x(t)g(t), x(0)

w(t)

g

x(0)
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Introduction

Semi-active dampers are type of actuators which are characterized by
low energy consumption, dissipativity and inherent stability.

Variable Orifice MR

Pneumatic
Variable Viscous
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Introduction

A possible approach for semi-active control design:

Controller

Plant

Actuator

Actuator
Controller

System
Controller Sensors

x(t)g(t), x(0)

w(t)

wd(t)

Figure: A semi active controlled system

If w(t) = wd(t)∀t, than wd is realizable.
The significance of a realizable wd increases when optimal control is
desired.
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Introduction

In order to compute a realizable wd, the system controller must consider
the actuator constraints.
For semi-active controlled plants, it must consider a fundamental
semi-active constraint.

ż(t)

w(t): compressive force

Definition 1 (Semi-Active Constraint).

w(t)ż(t) ≤ 0
or
w(t)cx(t) ≤ 0
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Aims and Scope

To compute a realizable optimal feedback for mechanical plant, which is
controlled by a single semi-active damper.
The solution consists of two key stages:

1 Reformulation of the problem by writing the linear state equation as
an equivalent bilinear one.

2 Using Krotov’s method to derive an algorithm for the computation of
an optimal semi-active feedback.
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Optimal Control Problem - Plant Model

The DOF model for free vibrating linear structure, equipped with a single
actuator:

Mz̈(t) + Cdż(t) + Kz(t) = ϕw(t); z(0), ż(0) ∈ Rnz , ∀t ∈ (0, tf) (1)

where M > 0, Cd ≥ 0 and K > 0 are nz × nz; nz is the number of dynamic
degrees of freedom (DOF); z : [0, tf ] → Rnz is a smooth vector function of
the DOF displacements; w : [0, tf ] → R is a control force signal and
ϕ ∈ Rnz is an input vector that describes how the control force affects the
structure’s DOF. The state space model:

ẋ(t) =Ax(t) + bw(t); x(0); x(t) =
[
z(t)
ż(t)

]
(2a)

A ≜
[

0 I
−M−1K −M−1Cd

]
∈ Rn×n (2b)

b ≜
[

0
M−1ϕ

]
∈ Rn (2c)
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Optimal Control Problem - CBQR

By writing w in the bilinear form:

w(t) = ŵ(t, x(t)) = −u(t)cx(t); u(t) ≥ 0

we are assured that the semi-active constraint is intrinsically satisfied.

Definition 2 (CBQR).
A constrained bilinear quadratic regulator refers to the minimization of

J(x, u) =1
2

tf∫
0

x(t)TQx(t) + ru(t)2d t; Q ≥ 0, r > 0

subjected to

ẋ(t) = [A − u(t)bc]x(t), x(0); u(t) ≥ 0
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Optimal Control Theory

V. F. Krotov
(1932-2015)

Starting in the sixties, sufficient conditions for global optimum of
optimal control problems were published by V. F. Krotov 1 .
It enabled the computation of a global optimum by an algorithm
which is known as global method of successive improvements of
control or Krotov’s method.

1V. F. Krotov, Global Methods in Optimal Control Theory, 1995.
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Optimal Control Theory

Let
U : A set of admissible control signals.
X : A linear space of state vector functions.
admissible process: A pair (x,u), where u ∈ U , x ∈ X and they
both satisfy the states equation

ẋ(t) =f(x(t),u(t), t)
x(0) ∈ Rn, t ∈ (0, tf)

(3)

X (t): The set {x(t)|x ∈ X } ⊂ Rn, i.e., an intersection of X at a
given t. For instance, X (tf) ⊆ Rn is a set of all the terminal states of
the processes in X .
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Optimal Control Theory - Krotov’s Sufficient Condition

q: A piecewise smooth function Rn × R → R, denoted as Krotov
function or solving function. Its partial derivatives are denoted by qt
and qx.
J: A performance index. It is a functional

J(x,u) =lf (x(tf)) +

tf∫
0

l(x(t),u(t), t)d t

where lf : Rn → R and l : Rn × Rnu × R → R are continuous.
Each q is related with an equivalent formulation of performance index, as
follows.
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Optimal Control Theory - Krotov’s Sufficient Condition

Theorem 3.
Let (x,u) be an admissible process. For each q there is an equivalent
representation of J(x,u):

Jeq(x,u) =sf (x(tf)) + q(x(0), 0) +
tf∫

0

s(x(t),u(t), t)d t ≡ J(x,u) (4)

s(x(t),u(t), t) ≜qt(x(t), t) + qx(x(t), t)f(x(t),u(t), t)
+ l(x(t),u(t), t)

(5a)

sf (x(tf)) ≜lf (x(tf))− q(x(tf), tf) (5b)

Proof.
Substitute s and sf in Jeq, and then use Newton-Leibniz formula.
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Optimal Control Theory - Krotov’s Sufficient Condition

It should be stressed that J(x,u) = Jeq(x,u) holds if x and u satisfy
the state equation (Eq. (3)).
As q is not unique, the equivalent representation Jeq, s and sf, are
also non-unique.
In many publications, s is written with an opposite sign before l,
Though, there is no intrinsic difference between these two
formulations.
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Optimal Control Theory - Krotov’s Sufficient Condition

Sufficient condition for a global optimal admissible process, by means of
Jeq, is given by:

Theorem 4.
Let s and sf be related with some q. Let (x∗,u∗) be an admissible process.
If:

s(x∗(t),u∗(t), t) = min
x(t)∈X (t)
u(t)∈U (t)

s(x(t),u(t), t) ∀t ∈ [0, tf)

sf (x∗(tf)) = min
x(tf)∈X (tf)

sf (x(tf))
(6)

then (x∗,u∗) is an optimal process.

Proof.
Assume that Eq. (6) holds and expand the difference
Jeq(x,u)− Jeq(x∗,u∗).
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Optimal Control Theory - Krotov’s Sufficient Condition

An optimum derived by theorem 4 is global since the minimization
problem defined in Eq. (6) is global.
Theorems 4 and 3 provide a hint for finding a global optimum. That
is, one should formulate q such that it will be possible to compute
(x∗,u∗) from:

s(x∗(t),u∗(t), t) = min
x(t)∈X (t)
u(t)∈U (t)

s(x(t),u(t), t) ∀t ∈ [0, tf)

sf (x∗(tf)) = min
x(tf)∈X (tf)

sf (x(tf))

However, the main problem remains - the existence and formulation
of such q. Note that a similar approach is used in Lyapunov’s method
of stability.
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Optimal Control Theory - Krotov’s Method

Krotov’s sufficient condition lays the foundation for novel algorithms
for the solution of optimal control problems. Krotov’s method is one
of them.
According to this method, the solution is not direct but a sequential
one. It yields a sequence of admissible processes which converges
monotonically to an optimum (x∗,u∗). Such a sequence of processes
is called an optimizing sequence:

(xk,uk) → (x∗,u∗); J(xk,uk) ≥ J(xk+1,uk+1)

s.t.
ẋ∗(t) = f(x∗(t),u∗(t), t); u∗ = argmin

x,u
J(x,u)

The use of Krotov’s method relies on the solution of another key
problem which is the formulation of a sequence of solving functions -
{qk}.
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Optimal Control Theory - Krotov’s Method

u: A control signal, i.e. a mapping R → Rnu .
û: A control law, i.e. a mapping Rn × R → Rnu .

Let (x0,u0) be some initial admissible process. An improved process
(x1,u1) is computed in the following manner:

1 Formulate q0 such that s0 and sf 0 will satisfy:

s0(x0(t),u0(t), t) = max
x∈X (t)

s0(x,u0(t), t) ∀t ∈ [0, tf)

sf 0(x0(tf)) = max
x∈X (tf)

sf 0(x)

2 Formulate a control law û0 such that

û0(x(t), t) = arg min
u∈U (t)

s0(x(t),u, t) ∀x ∈ X , t ∈ [0, tf ]

3 Solve ẋ1(t) = f(x1(t), û0(x1(t), t), t), for the given x(0), and set
u1(t) = û0(x1(t), t) for all t ∈ [0, tf ].

(x2,u2) is computed by starting over from (x1,u1), formulation of q1 and
û1, and so on.
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Optimal Control Theory - Krotov’s Method

The use of Krotov’s method is not straightforward. It requires the
formulation of a suitable sequence {qk}, such that sk and sfk will
satisfy the aforementioned min/max problem.
The search for such a sequence is a significant challenge. There is no
known unified approach for formulating Krotov functions and they
usually differ from one optimal control problem to another.
In this work, a suitable sequence of Krotov functions was found for
the defined CBQR problem.
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Main Results

The next theorem defines the CBQR control law (step 2 in Krotov’s
method).

Theorem 5.

Let the Krotov function be

q(x(t), t) = 0.5x(t)TP(t)x(t); P(tf) = 0 (7)

where P : R → Rn×n is a symmetric matrix function, smooth above (0, tf);
and let x be a given process. There exists a unique control law that
minimizes s(x(t), u(t), t) and sf(x(tf)). It is defined by:

û(x(t), t) = max

{
x(t)TP(t)bcx(t)

r , 0
}

(8)

Proof.
By substitution of Eq. (7) in Eq. (5a) and (5b); completing the square
and minimizing with relation to an admissible u(t).
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Main Results

The next theorem defines qk that corresponds (xk,uk) (step 1 in Krotov’s
method).

Theorem 6.

Let (xk, uk) be a given admissible process and let Pk be the solution of:

Ṗk(t) =− Pk(t)[A − uk(t)bc]− [AT − uk(t)cTbT]Pk(t)− Q
Pk(tf) =0; t ∈ (0, tf)

(9)

The Krotov function qk(x(t), t) = 0.5x(t)TPk(t)x(t) satisfies

sk(xk(t), uk(t), t) = max
x∈X (t)

sk(x, uk(t), t) (10)

Proof.
By substitution of qk,f,l in Eq. (5a) and using Eq. (9).
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Main Results

The dependency of Krotov’s method on a Krotov function makes it
somewhat abstract. Theorems 5 and 6 turn it into a concrete solution
method for the addressed CBQR problem.
As J has a lower bound, we are assured that the sequence {(xk, uk)}
gets arbitrary close to some admissible process (x∗, u∗), which is the
optimal one.
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Main Results - Successive improvement of control process.

Input: A,b, c,Q, r, x(0).
Initialization:

1 Define a convergence tolerance - ϵ > 0.
2 Set u0 = 0 and solve:

ẋ0(t) =Ax0(t); x(0)
Ṗ0(t) =− P0(t)A − ATP0(t)− Q; P0(tf) = 0

3 Compute:

J0(x0, u0) =
1
2

tf∫
0

x0(t)TQx0(t)d t
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Main Results - Successive improvement of control process.

For k = {0, 1, 2, 3, 4, . . .}:
1 Propagate to the improved process by solving:

ẋk+1(t) =[A − ûk+1(xk+1(t), t)bc]xk+1(t); xk+1(0) = x(0)

where

ûk+1(xk+1(t), t) = max

{
xk+1(t)TPk(t)bcxk+1(t)

r , 0
}

2 Set uk+1(t) = ûk+1(xk+1(t), t).
3 Solve:

Ṗk+1(t) =− Pk+1(t)[A − uk+1(t)bc]
− [AT − uk+1(t)cTbT]Pk+1(t)− Q

Pk+1(tf) =0
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Main Results - Successive improvement of control process.

4 Compute:

J(xk+1, uk+1) =
1
2

tf∫
0

xk+1(t)TQxk+1(t) + ruk+1(t)2d t

5 If |J(xk, uk)− J(xk+1, uk+1)| < ϵ, stop iterating, otherwise - continue.
Return: Pk+1.

30 / 38



1 Introduction

2 Aims and Scope

3 Optimal Control Problem - CBQR

4 Optimal Control Theory

5 Main Results

6 Numerical Example

7 Conclusions

31 / 38



Numerical Example

z1(t)

z2(t)

z3(t)

3×
3[

m
]

4 [m]

Figure: Dynamic scheme of the evaluated model.
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Numerical Example
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Numerical Example
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Numerical Example
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Conclusions

In this study a semi-active control design problem was formulated as
an optimal control problem for a free vibrating bilinear system with a
constrained single control signal and a quadratic performance index.
The problem was solved by Krotov’s method and a Krotov function
sequence that suites the CBQR problem was found.
The solution was organized as an algorithm, which requires the
solution of the states equation and a differential Lyapunov equation in
each iteration.
The algorithm convergence is guaranteed by virtue of Krotov’s
method properties.
The method efficiency is demonstrated in a numerical example.
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Thank You!
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