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Why Study Monotone Systems?

An easy to check sufficient condition

for monotonicity

3

Monotonicity implies strong global results

Many applications in various fields of science



4

Disclaimer

Generality and technical details are 

readily sacrificed for simplicity

of presentation.



Monotone Systems-An Example

Consider the scalar linear system:
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𝑥 𝑡, 𝑎 = 𝑒17𝑡𝑎.

𝑥 𝑡, 𝑎 = 𝑒17𝑡𝑎

 𝑥(𝑡) = 17𝑥(𝑡).

The solution for 𝑥 0 = 𝑎 is:

Fix two initial conditions

𝑎 ≤ 𝑏.

Then
𝑥 𝑡, 𝑏 = 𝑒17𝑡𝑏 .

The solutions preserve the ordering between

the initial conditions for all time t.

≤



Monotone Systems-Definition

Notation For two vectors
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𝑎, 𝑏 ∈ 𝑅𝑛, means that𝑎 ≤ 𝑏

𝑎𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,2,… , 𝑛.

Example 1:

2
4.32
3

≤
2.1
5
3

.

Example 2:

𝑎1

𝑎2

𝑏 ≥ 𝑎



Monotone Systems-Definition
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is calledDefinition:  𝑥 = 𝑓(𝑥)

monotone if

𝑎 ≤ 𝑏 ⟹ 𝑥 𝑡, 𝑎 ≤ 𝑥 𝑡, 𝑏 𝑡 ≥ 0.for all

The system

In other words, the flow preserves the partial

ordering between the initial conditions for all

time 𝑡 ≥ 0.



When is a 

System Monotone?
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For example,

Definition: A matrix is called Metzler𝐴 ∈ 𝑅𝑛𝑥𝑛

if every off-diagonal entry of is𝐴

𝐴 =
∗ 2 0
2.3 ∗ 0
1 4 ∗

is Metzler.

non-negative.



When is a 

System Monotone?
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Let

Theorem (Kamke, 1932)

 𝑥 = 𝑓(𝑥)

Consider the system

whose trajectories evolve on a convex set

If is Metzler for all then the system

is monotone.

𝐷.

𝐽 𝑥 ≔
𝜕𝑓 𝑥

𝜕𝑥
∈ 𝑅𝑛×𝑛.

𝐽 𝑥 𝑥 ∈ 𝐷



Interpretation of 

Kamke’s Condition
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𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥) ≥ 0.

Thus, an increase in

The condition:

𝑥𝑗 yields an increase in  𝑥𝑖=𝑓𝑖.

The state-variables “cooperate” with one
another.

𝐽(𝑥) ≔
𝜕𝑓

𝜕𝑥
𝑥

is Metzler means that for any 𝑖 ≠ 𝑗,



Proof of Kamke’s Theorem
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If not monotone then 𝑎 ≤ 𝑏 ⇏ 𝑥 𝑡, 𝑎 ≤ 𝑥 𝑡, 𝑏

𝑥1 𝑇, 𝑎 = 𝑥1 𝑇, 𝑏 , 

𝑥2 𝑇, 𝑎 ≤ 𝑥2 𝑇, 𝑏 , 

⋮
𝑥𝑛 𝑇, 𝑎 ≤ 𝑥𝑛 𝑇, 𝑏 ,

for all 𝑡 ≥ 0.

This means:

Consider:
 𝑥1 𝑇, 𝑎 −  𝑥1 𝑇, 𝑏 =𝑓1 𝑥 𝑇, 𝑎 − 𝑓1 𝑥 𝑇, 𝑏

=  𝑓1 𝑥 𝑇, 𝑏 + 𝑥 𝑇, 𝑎 − 𝑥 𝑇, 𝑏 𝑟
𝑟=0

𝑟=1

=  
0

1 𝜕𝑓1
𝜕𝑟

𝑥 𝑇, 𝑏 + 𝑥 𝑇, 𝑎 − 𝑥 𝑇, 𝑏 𝑟 𝑑𝑟

= 0
1
 𝑖=1
𝑛 𝜕𝑓1

𝜕𝑥𝑖
(∘) 𝑥𝑖 𝑇, 𝑎 − 𝑥𝑖 𝑇, 𝑏 𝑑𝑟

= 0
1 𝑖=2

𝑛 𝜕𝑓1

𝜕𝑥𝑖
(∘) 𝑥𝑖 𝑇, 𝑎 − 𝑥𝑖 𝑇, 𝑏 𝑑𝑟

≤ 0.

and 𝑥1 𝑇+, 𝑎 > 𝑥1 𝑇+, 𝑏 .



A Special Case: 

Positive Linear Systems 
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Consider the linear system:Corollary

 𝑥 = 𝐴𝑥,

0 ≤ 𝑏 ⟹ 0 ≤ 𝑥 𝑡, 𝑏

that is,0 ≤ 𝑏 ⟹ 𝑥 𝑡, 0 ≤ 𝑥 𝑡, 𝑏 ,

for all 𝑡 ≥ 0.

𝐴

Then

All the results described below hold for this

special case.

Metzler.



Implications of Monotonicity
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Consider the dynamical system:

 𝑥 = 𝑓 𝑥

whose trajectories evolve on a compact
set 𝐷.

Definition: The omega limit set of

a point 𝑥0 ∈ 𝐷 is the set of points 𝑝 such that:

for some sequence 𝑡1, 𝑡2, 𝑡3… → ∞.𝑥(𝑡𝑘 , 𝑥0) → 𝑝

𝜔(𝑥0)

𝑥0

𝑒
𝜔(𝑥0) = {𝑒}

𝑥0

𝜔(𝑥0) = 𝛾

𝛾



Implications of Monotonicity
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Consider the monotone system:

 𝑥 = 𝑓 𝑥

whose trajectories evolve on a compact

set 𝐷.

Lemma Pick If there exists

such that

𝑥0 ∈ 𝐷.

𝑥(𝜏, 𝑥0) ≥ 𝑥0

𝜏 > 0

𝜔(𝑥0)then is a closed orbit with period 𝜏.

𝑥0
𝑥(𝜏, 𝑥0) ≥ 𝑥0



Implications of Monotonicity
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Lemma Pick If there exists such

that

𝑥0 ∈ 𝐷.

𝑥(𝜏, 𝑥0) ≥ 𝑥0

𝜏 > 0

𝜔(𝑥0)then is a closed orbit with period 𝜏.

𝑥(𝜏, 𝑥(𝜏, 𝑥0)) ≥ 𝑥(𝜏, 𝑥0)

𝑥(𝜏, 𝑥0) ≥ 𝑥0
↓

↓

𝑥(2𝜏, 𝑥0) ≥ 𝑥(𝜏, 𝑥0)

Sketch of Proof

…≥ 𝑥(3𝜏, 𝑥0) ≥ 𝑥(2𝜏, 𝑥0) ≥ 𝑥(𝜏, 𝑥0) ≥ 𝑥0

so, 𝑥(𝑘𝜏, 𝑥0) → 𝑝 ∈ 𝜔(𝑥0).



Implications of Monotonicity

Two results that provide more information, 

under additional assumptions, are:

1. Ji-Fa’s Theorem 

2. Smillie’s Theorem  
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Theorem (Hirsch, 1988) Almost every compact

trajectory of a monotone system converges to

the set of equilibria.



Ji-Fa’s Theorem (1994)
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Theorem Consider the monotone system:

 𝑥 = 𝑓 𝑥

whose trajectories evolve on a compact set 𝐷.
If contains a single equilibrium point then𝑒𝐷

lim
𝑡→∞

𝑥(𝑡, 𝑎) = 𝑒 𝑎 ∈ 𝐷.for all

Proof Pick 𝑎 ∈ 𝐷. Let 𝑚:= inf(𝜔 𝑎 ).

𝜔 𝑎

𝑚1

𝑚2

𝑎



Ji-Fa’s Theorem-Sketch of Proof
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Pick 𝑎 ∈ 𝐷. Let 𝑚:= inf 𝜔 𝑎 ,𝑀 ≔ sup(𝜔 𝑎 ).

𝜔 𝑎

𝑚1

𝑚2

Ji-Fa showed:
𝑥 𝑡,𝑀 ≥ 𝑀, 𝑥 𝑡,𝑀 → 𝑒.and, similarly,

𝑥 𝑡,𝑚 ≤ 𝑚, 𝑥 𝑡,𝑚 → 𝑒.

𝑒 𝑒

𝑥(𝑡,𝑚) ≤ 𝑚 ≤ 𝜔 𝑎 ≤ 𝑀 ≤ 𝑥(𝑡,𝑀).

𝑀1

𝑀2

Thus,

So, 𝜔(𝑎) = {𝑒}.



Smillie’s Theorem (1984)
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Theorem Consider the monotone system:

 𝑥 = 𝑓 𝑥

𝐷.

whose trajectories evolve on a compact

set If is tridiagonal and strongly

Metzler on then converges to an

equilibrium for all

𝑥(𝑡, 𝑎)

𝑎 ∈ 𝐷.

𝐽(𝑥)

𝐷

𝑎

𝑥(𝑡, 𝑎)

𝐽 𝑥 =

∗ + 0 0
+ ∗
0
0

+
0

+ 0
∗
+

+
∗



Smillie’s Theorem (1984)
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Idea of Proof For let be the number𝑦 ∈ 𝑅𝑛, 𝜎 𝑦

of sign changes in 𝑦:
𝜎

1
−2
4.17

= 2.

Let Then𝑧 𝑡 ≔  𝑥 𝑡 = 𝑓 𝑥(𝑡) .

 𝑧 𝑡 = 𝐽 𝑥 𝑡  𝑥 𝑡 = 𝐽 𝑥 𝑡 𝑧 𝑡 .

Smillie showed: is non-increasing in𝜎 z t

Since this function is bounded below by

zero, it can be used as a discrete-valued

Lyapunov function.

𝑡.



Smillie’s Theorem (1984)
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Idea of Proof analyzing sign changes in 𝑧 𝑡 ≔  𝑥(𝑡).

Then:

+
+
+

𝑧 𝑡− 𝑧 𝑡 𝑧 𝑡+

+
0
+

+
−
+

 𝑧 𝑡 = 𝐽 𝑥 𝑡 𝑧 𝑡

=
∗ + 0
+ ∗ +
0 + ∗

+
0
+

Seeking a contradiction, assume:

=

∗
+
∗

.



Application 1: the 

Ribosome Flow Model (RFM) 

Biological “machines” that move along a 

lattice of sites:

 Ribosome flow along the mRNA molecule  

Molecular motors move cargo along 

microtubules

The “machines” have volume leading to 

simple exclusion. 

The Ribosome Flow Model (RFM) allows 

modeling and analyzing such processes.
26
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Ribosome Flow Model

site 1 is completely free; 

site 1 is completely full

1 0 1 1 1 2

2 1 1 2 2 2 3

1 1

1 1

1 1

1

( ) ( )

( ) ( )

( )
n n n n n n

x x x x

x x x x x

x x x x

 

 

  

   

   

  

0 1

1( )x t 2( )x t ( )
n

x t

n


1n
 

1 0( )x t 

1 1( )x t 

Codon
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Ribosome Flow Model*

is the translation rate at time  

1 0 1 1 1 2

2 1 1 2 2 2 3

1 1

1 1

1 1

1

( ) ( )

( ) ( )

( )
n n n n n n

x x x x

x x x x x

x x x x

 

 

  

   

   

  

( ) : ( )
n n

R t x t .t

unidirectional movement  & simple exclusion

*Reuveni, Meilijson, Kupiec, Ruppin & Tuller, “Genome-

scale Analysis of Translation Elongation with a Ribosome 

Flow Model”, PLoS Comput. Biol., 2011
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The RFM is Monotone

1 0 1 1 1 2

2 1 1 2 2 2 3

3 2 2 3 3 3

1 1

1 1

1

( ) ( ),

( ) ( ),

( ) .

x x x x

x x x x x

x x x x

 

 

 

   

   

  

1 1

1 2 2 2

2 3

0

1

0 1

*

( ) ( ) *

( ) *

x

J x x x

x



 



 
  
 
  

Jacobian:

and this is Metzler on [0,1]3.
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RFM is Monotone: Explanation

1 0 1 1 1 2

2 1 1 2 2 2 3

3 2 2 3 3 3

1 1

1 1

1

( ) ( ),

( ) ( ),

( ) .

x x x x

x x x x x

x x x x

 

 

 

   

   

  

Consider:

This increases with the density at site 1 

and with the density at site 3.

2 1 1 2 2 2 31 1( ) ( ),x x x x x    



Application to the RFM
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Corollary 1:  All trajectories of the RFM 

converge to a unique equilibrium point e.*

*Margaliot and Tuller, “Stability Analysis of the 

Ribosome Flow Model”, IEEE TCBB, 2012. 

Biological interpretation: the parameters 

determine a unique steady-state of 

ribosome distributions and protein

production rate.  



Simulation Results

( ) | ( ; ) | .
f

J u x t u

0
(0) .x x

All trajectories emanating from C:=[0,1]3

remain in C, and converge to a unique 

equilibrium point e. 32

0.
f

t  e



Application 2: A Model 

from Electrophysiology*

Cells are electrically coupled into 

networks via gap junctions (plaques of 

ion channels).

Passage of ions across the junction is 

diffusive, and depends linearly on the 

voltage difference across the junction.

33

*Donnell, Baigent & M. Banaji, “Monotone dynamics of 

two cells dynamically coupled by a voltage-dependent 

gap junction”, JTB, 2009.



Application 2: A Model 

from Electrophysiology

 Isolated cells typically oscillate. What 

happens when they are connected via 

gap junctions? 

Analytically tractable model of two

cells electrically coupled via a dynamic 

gap junction, and proof of convergence 

using Smillie’s theorem.
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*Donnell, Baigent & M. Banaji, “Monotone dynamics of 

two cells dynamically coupled by a voltage-dependent 

gap junction”, JTB, 2009.



A Model from Electrophysiology
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i
e

( )x t

1
min max

(x( )) ( ) ( ( )) .g t x t g x t g  

1V
2V

V

- cell resting potential. 

- fraction of gap channels that are open.

1 0(V) ( )( ), V '(V), V '(V) .x x V x       



A Model from Electrophysiology
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1V
2V

V

1 1 1 1 1 1 2

2 2 2 2 2 1 2

1 2 1 2

1

1

1

( / )( ) ( )g(x),

( / )( ) ( )g(x),

x ( )x ( )( x).

C V R V e V V

C V R V e V V

V V V V 

    

    

     



A Model from Electrophysiology
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1V
2V

V

0

0

*

*

*

J

 
   
 
  

In the transformed state-variables,

1 1 2 2, , : ,x V C V C V  



A Model from Electrophysiology
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1V
2V

V

By Smillie’s theorem, every solution 

converges to an equilibrium.  

0

0

*

*

*

J

 
   
 
  



Simulation
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Conclusions
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We only discussed ODEs. 

Many of the results hold for:

--Infinite-dimensional systems;

--PDEs;

--Systems with time-delay,….

Monotone dynamical systems enjoy a deep

and powerful theory and have found

numerous applications in various fields.



Further Reading
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THANK YOU!

• H. L. Smith, Monotone Dynamical Systems, 

2008.

• D. Angeli & E. D. Sontag, Monotone control 

systems, IEEE TAC, 2003.



Additional Slides
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function ret=banaji_dyn(t,y)

v1=y(1);v2=y(2);x=y(3);

C1=1;C2=1/2;R1=1;R2=5;e1=2;e2=1;

g=x*1/2+(1-x)*2;

ret1=(-(1/R1)*(v1-e1)-(v1-v2)*g)/C1;

ret2=(-(1/R2)*(v1-e2)+(v1-v2)*g)/C2;

ret3=-(v1-v2)^2*x+cosh((v1-v2))*(1-x);

ret=[ret1;ret2;ret3];

-------------------------------------------

Eq=[1.8333    1.6001    0.8571]


