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Why Study Monotone Systems?

An easy to check sufficient condition
for monotonicity

Monotonicity implies strong global results

Many applications in various fields of science



Disclaimer

-,

SURF AT
YOUR OWN
RISK

N

Generality and technical details are
readily sacrificed for simplicity
of presentation.



Monotone Systems-An Example

Consider the scalar linear system: x(t) = 17x(t).

The solution for x(0) =a iS:

x(t,a) = el’ta.

Fix two Initial conditions
a < b.
Then

x(t,a) = el’ta < x(t,b) =e'"'h.

The solutions preserve the ordering between
the initial conditions for all time t.



Monotone Systems-Definition

Notation For two vectors a,b € R*, ¢ < b means that

a; < bi' [ = 1,2, ey, I

Example 1.

Example 2:



Monotone Systems-Definition

Definition: The system x = f(x) Is called
monotone If

a<b = x(t,a) <x(tb) forall t=0.

In other words, the flow preserves the partial
ordering between the initial conditions for all

time t>0.



When Is a
System Monotone?

Definition: A matrix A4 € R™" |s called Metzler

If every off-diagonal entry of 4 is
non-negative.

For example,

IS Metzler.



When Is a
System Monotone?

Theorem (Kamke, 1932) Consider the system

x = f(x)
whose trajectories evolve on a convex set D.
0
Let ](_X') — f(x) = RnXTl.
dx

If J(x) is Metzler for all xe D then the system
IS monotone.



Interpretation of
Kamke’s Condition

The condition: of
J(x) = a(x)

IS Metzler means that for any i #j,

0fi

Thus, an increase in x; ylelds an increase Iin x;=f;.

The state-variables “cooperate” with one
another.
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Proof of Kamke’s Theorem

If not monotonethen a<b # x(t,a) < x(t,b) forall t=0.

This means:  x,(T,a) = x(T,b), and x,(T*, a) > x,(T*,b).
XZ(T, a) < xZ(T; b),

xn(T; a) S xn(T; b);
Consider:

xl(Ti (,l) _xl(TJ b)=f1(X(T, a)) —fl(X(T, b)) ~
=f,(x(T,b) + (x(T, @) — x(T, D))r)|"_,

(1o

_ f —= (x(7,b) + (x(T,@) = x(T, b))r)dr
0

=y 21 (2@) (aT@ = xi (T, b)dr

50 (2 ) (@) — %7, 0)dr

< 0.
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A Special Case:
Positive Linear Systems

Corollary Consider the linear system:
x =Ax, A Metzler.

Then
0<b = x(t,0) <x(t,b), thatis,
0<b =0<x(t,b) forall t=0.

All the results described below hold for this
special case.
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Implications of Monotonicity

Consider the dynamical system:
x = f(x)

whose trajectories evolve on a compact
set D.

Definition: The omega limit set w(x,) of
a point xo € D is the set of points p such that:

x(tx,x9) = p for some sequence ty,ty, ts ... > oo.

Yo ~Q_
X0

\\- Q7

w(xy) = {e} w(xg) =Y
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Implications of Monotonicity

Consider the monotone system:
x = f(x)
whose trajectories evolve on a compact

set D.
Lemma Pick x, € D.If there exists >0

such that x(T, xo) = X
then w(xy) is aclosed orbit with period .

x(T, Xg9) = X
X0

»
>
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Implications of Monotonicity

Lemma Pick x, € D. If there exists 7 >0 such
that x(T, xXy) = X
then w(x,) Is aclosed orbit with period .

Sketch of Proof x(T, Xp) = X
l

x(t,x(7, x9)) = x(7, x0)

l

x(27,x9) = x(7, x0)

.2 x(31,x9) = x(21,x5) = x(7, Xp) = X

so, x(kt,xy) = p € w(xy).
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Implications of Monotonicity

Theorem (Hirsch, 1988) Almost every compact

trajectory of a monotone system converges to

the set of equilibria.

Two results that provide more information,

under additional assumptions, are:
1. Ji-Fa’s Theorem

2. Smillie’s Theorem
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Ji-Fa’s Theorem (1994)

Theorem Consider the monotone system:

x = f(x)

whose trajectories evolve on a compact set D.

If D contains a single equilibrium point e then

lim x(t,a) =e forall a€D.

t— oo

Proof Pick a € D. Let m: = inf(w(a)).

[ a

mq
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Ji-Fa’s Theorem-Sketch of Proof

Pick aeD. Let m:=inf(w(a)),M = sup(w(a)).
M,

(D
- . w(a)
myq Ml :

Ji-Fa showed: x(t,m) <m, x(t,m) - e.
and, similarly, x(t, M) = M, x(t, M) - e.

Thus, x(t,m) <m < w(a) <M < x(t,M).
} }
e e

S0, w(a) = {e}.

18



Smillie’s Theorem (1984)

Theorem Consider the monotone system:

x = f(x)
whose trajectories evolve on a compact
set D. If J(x) 1Is tridiagonal and strongly
Metzler on D then x(t,a) converges to an
equilibrium for all a € D.

J(x) = (3
0

0 0 x(t,a)
+ 0
+ -

o + x +
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Smillie’s Theorem (1984)

ldea of Proof For y €R™ let o(y) be the number

of sign changes in y: U( _12 ) _9
4.17

Let z(t) = x(t) = f(x(t)). Then

z(t) = J(x(©))x(t) = J(x(t))z(t).

Smillie showed: o(z(t)) is non-increasing in t.
Since this function Is bounded below by

zero, It can be used as a discrete-valued
Lyapunov function.
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Smillie’s Theorem (1984)

ldea of Proof analyzing sign changes in z(t) = x(t).

Seeking a contradiction, assume:

Then:

z(t7)
_I_

_|_
_|_

z(t) z(t)

+ +
0 — >

+ -+

z(t) = J(x(t))z(t)

b3
:<-|—
x

*

« + 0\ /+
0 + =/ \+

)

|
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Application 1: the
Ribosome Flow Model (RFM)

Biological “machines” that move along a
lattice of sites:

® Ribosome flow along the mRNA molecule

® Molecular motors move cargo along
microtubules

The “machines” have volume leading to
simple exclusion.

The Ribosome Flow Model (RFM) allows
modeling and analyzing such processes.
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Ribosome Flow Model

X,(t) X, (t) Codon ()
x,(t)=0 site 1is completely free;
X,(t)=1 site 1is completely full

X, =A,(1— %)= A X (1= X,)
X, =A% (1= X,) = 4,X, (1= X;)

Xn = ﬂn—lxn—l (l_ Xn) _ ﬂ’n X,
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Ribosome Flow Model*

X, = A (1= X)) =A% (1-X,)
X, = A X (1-X,) =4, X, (1—X,)

Xn = ﬂn—lxn—l (1_ Xn) — ﬂ’n X,

unidirectional movement & simple exclusion
R(t) :=1,X,(1) is the translation rate at time t.

*Reuveni, Meilijson, Kupiec, Ruppin & Tuller, “Genome-
scale Analysis of Translation Elongation with a Ribosome

Flow Model”’, PLoS Comput. Biol., 2011 28



The RFM Is Monotone

X, =4, (1= X)) =A% (1= X,),

X, = A4 X (1=X,) =4, %X, (1—X,),
Xy = A, X, (1= X;) — A;X,.

Jacobian:

J(X)=

and this is Metzler on [0,1]3.

(

\

*

ﬂ’l(l_xz)
0

A%,

*

A,(1-X,)

0
A, X,

*

\

/



RFM is Monotone: Explanation
X, =4, (1= X)) =A% (1= X,),
X, = A4 X (1=X,) =4, %X, (1—X,),
X, =4, X, (1= X;) = A, X,.

Consider:
X, =X (1=-X,)=A4,%X,(1-X,),

This increases with the density at site 1
and with the density at site 3.
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Application to the RFM

Corollary 1: All trajectories of the RFM
converge to a unique equilibrium point e.*

Biological interpretation: the parameters
determine a unique steady-state of
ribosome distributions and protein
production rate.

*Margaliot and Tuller, “Stability Analysis of the
Ribosome Flow Model”, /EEE TCBB, 2012.
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Simulation Results

All trajectories emanating from C:=[0,1]3
remain in C, and converge to a unique
equilibrium point e. 3




Application 2: A Model
from Electrophysiology*

® Cells are electrically coupled into
networks via gap junctions (plaques of
lon channels).

® Passage of ions across the junction is
diffusive, and depends linearly on the
voltage difference across the junction.

*Donnell, Baigent & M. Banaiji, “Monotone dynamics of
two cells dynamically coupled by a voltage-dependent
gap junction”, J7B, 2009.
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Application 2: A Model
from Electrophysiology

® |solated cells typically oscillate. What
happens when they are connected via
gap junctions?

® Analytically tractable model of two
cells electrically coupled via a dynamic
gap junction, and proof of convergence
using Smillie’s theorem.

*Donnell, Baigent & M. Banaiji, “Monotone dynamics of
two cells dynamically coupled by a voltage-dependent
gap junction”, J7B, 2009. 34



A Model from Electrophysiology

—V

: &
Vi V,
Cl é, _ CE €, ——
e, -cell resting potential.

X(t) - fraction of gap channels that are open.
X=—a(V)x+pV)1-x), Va'(V),VA'(V)>0.

g(X(t)) = X(t) Gminy + (1= X(1)) G- 55



A Model from Electrophysiology

—V

%

V
2
£, e, = G,

Clvl =—(1/ R1)(V1 — el) — (Vl _Vz)g(x)1
szz =—(1/ Rz)(vz — ez) + (Vl _Vz)g(x)1
x=-a(V,-V,)x+ BV, -V, )(1-X).

Vi
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A Model from Electrophysiology

—V

In the transformed state-variables,
X, V, ¥=CV,+C)\V,,
+ 0

d =

(*
+

*

+

0 + %
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A Model from Electrophysiology

—V

O+
By Smillie’s theorem, every solution
converges to an equilibrium.
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Simulation

39



Conclusions

Monotone dynamical systems enjoy a deep
and powerful theory and have found
numerous applications in various fields.

We only discussed ODEs.
Many of the results hold for:
--Infinite-dimensional systems;
--PDEsS;

--Systems with time-delay,....
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Further Reading

e H. L. Smith, Monotone Dynamical Systems,
2008.

 D. Angeli & E. D. Sontag, Monotone control
systems, IEEE TAC, 2003.

THANK YOU!
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Additional Slides

function ret=banaiji_dyn(t,y)

vi=y(1);v2=y(2);x=y(3);
C1=1;C2=1/2;R1=1;R2=5;e1=2;e2=1;
g=x*1/2+(1-x)*2;
ret1=(-(1/R1)*(v1-e1)-(v1-v2)*g)/C1,
ret2=(-(1/R2)*(v1-e2)+(v1-v2)*q)/C2;
ret3=-(v1-v2)"2*x+cosh((v1-v2))*(1-x);
ret=[ret1;ret2;ret3];

Eq=[1.8333 1.6001 0.8571]
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