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Motivation and Problem Definition Motivation

Motivation

Flexible structures would be easier to control when vibrational
modes are attenuated. Thus, there is motivation to combine a
pre-filter and feedback.

Input Shaping: shape the input in such a way that the
vibration modes are not excited

Traditional input shaping posses a weak point: Inability to
suppress vibrations caused by external disturbances. Only
command-incurred vibrations are attenuated

Thus, we will focus on:

Applying input shaping approaches to flexible systems to re-

duce disturbance-incurred residual vibrations
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Motivation and Problem Definition Problem Definition

Problem Definition

Consider a crane conveying a load through a rest-to-rest manoeuver.
Once the manoeuver is accomplished, the load is dropped to its final
location. Dropping the load incurs a sudden change in the external
force induced by the load on the crane. The sudden change in the
external force may be seen as an external, impulse-like, disturbance.
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Introduction: Input Shaping

Introduction: Input Shaping

The term Input Shaping c© (introduced by Singer et al, 1990):

The operation of convolving a desired input command with an

impulse sequence

1 Applying an impulse, A1, will cause system to vibrate
2 Applying second impulse, A2, at a later time cancels vibration
3 The second impulse must be applied at the correct time and

must have the appropriate magnitude for complete cancelation
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Introduction: Input Shaping

Introduction: Input Shaping - Cont.

The amplitudes and time instances of the impulses in an input shaper
are determined by solving a set of constraint equations. A variety of
constraints are used:

Robustness constraints (Singer et al. 1990)

Residual vibration constraints (Singhose et al. 1996, 1997)

Impulse amplitude constraints (Singhose et al. 1994)

Optimal time requirement (Pao & Singhose, 1995)

4 / 19



Introduction: Input Shaping

Introduction: Input Shaping - Cont.

For example, the ZV shaper (Singer et al, 1990), for 2nd Ord. linear
system, with damping ratio ζ , and damped natural frequency,
ωd = ωn

√

1− ζ2 :

-

6
6

t1 = 0 t2 = 0.5Td Time

1
1+K

K
1+K

K = e
−ζπ√
1−ζ2

Td = 2π
ωd

- Damped period, in [sec]
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Introduction: Input Shaping

Introduction: Input Shaping - Cont.

In the ZV-shaper, t2 depends on Td , and cannot be shortened
arbitrarily. This is a major weakness of the ZV-shaper.

A limited attempt to overcome this drawback was presented by
Singhose et al. (1994), where negative impulses are allowed in
the filter. Yet, impulse instances still depends on Td .

A different approach is taken by Magee & Book (1998) where
the Optimal Arbitrary Time-delay Filter (OATF) is introduced:

ISOATF (t) =
3∑

j=1

Ajδ(t − (j − 1) ·∆) (1)

δ(t) - Dirac delta function
∆ - Shaper time delay, arbitrarily chosen
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Introduction: Input Shaping

Introduction: Input Shaping - Cont.

Chang et al (2004) introduce the CIST - Commandless Input
Shaping Technique:

CIST

Command Input Plant

Disturbance d(t)

Acctuator

IS(t)

uSH(t)r(t) = 0
GP (s)GA(s)

y(t)

When a disturbance is induced, a set of two impulse is directly
applied to the system via an actuator

An analytic solution for the shaper parameters for different
actuator dynamics and 2 types of disturbances was proposed

Yet, dynamic systems can not be controlled by direct impulses,
thus, CIST seems impractical !!.
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The ACIST Simple ACIST

ACIST - Concept

Consider:

ACISTCmd(t)
G(s)

ACIST

rA(t)

d(t)

IS
y(t)

y (t) - Output
rA(t) - Auxiliary reference command
IS - Impulse set which convolves rA(t)
The disturbance:

d(t) = Adδ(t − td) (2)

We seek to bring the total response, y (t), to zero after some finite
time t ≥ tn by a well designed ACIST
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The ACIST Simple ACIST

Simple ACIST

Assume:

IS(t) = A1δ(t − t1) + A2δ(t − t2 (3)

rA(t) = RA · 1(tr)

The output, y (t), is

y (t) = RA(A1 + A2) + RAe
−ζωnt

√
C 2 + S2 sin (ωd t + ψ) (4)

where ψ is a phase shift and (after setting A2 = −A1)

C =
Adωn

R
√

1− ζ2
+

A1ζ√
1−ζ2

2ζ2 − 1
− A1e

ωnζt2

2ζ2 − 1

[

cos
(π

2
− ωd t2

)

+
ζ cos(ωdt2)
√

1− ζ2

]

S =
A1

2ζ2 − 1
− A1e

ωnζt2

2ζ2 − 1

[

sin
(π

2
− ωd t2

)

+
ζ sin(ωd t2)
√

1− ζ2

]

(5)
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The ACIST Simple ACIST

Simple ACIST - Cont.

For zero vibration we set C = 0 and S = 0, which yields:

Adωn(2ζ
2 − 1)

RAA1

√

1− ζ2
+

ζ
√

1− ζ2
= eωnζt2

[

sin (ωdt2) +
ζ cos(ωd t2)
√

1− ζ2

]

(6)

1 = eωnζt2

[

cos(ωd t2)−
ζ sin(ωd t2)
√

1− ζ2

]

(7)

For ζ = 0 we get

t2 =
nπ

ωd

, n = 0, 2, 4, ...,∞ (8)

A1 → ∞ (9)

For ζ 6= 0 we solve numerically to get t2, and

A1 =
Adωn(3ζ

2 − 2ζ4 − 1)e−ωnζt2

R
√

1− ζ2 sin(ωd t2)
(10)
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The ACIST Simple ACIST

Simple ACIST - Cont.

Solution for the damped case via simulation
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The simple ACIST reduces residual vibration drastically for t > t2.
However, the magnitude of the transient response is much higher
than the response without ACIST !!
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The ACIST ACIST with OATF

ACIST with OATF

Enhance the ACIST by using the 3-impulse OATF

ISOATF (t)=
∑3

j=1 Ajδ(t−(j−1)·∆) (11)

The total response is

y(t)=RA(A1+A2+A3)+RAe
−ζωnt

√
C2+S2 sin(ωd t+ψ) (12)

where

C=
Adωn

RA

√
1−ζ2

+

A1ζ√
1−ζ2

2ζ2−1
+

A2e
ωnζ∆

2ζ2−1

[

sin(ωd∆)+
ζ cos(ωd∆)√

1−ζ2

]

+

+
A3e

2ωnζ∆

2ζ2−1

[

sin(2ωd∆)+
ζ cos(2ωd∆)√

1−ζ2

]

S=
A1

2ζ2−1
+

A2e
ωnζ∆

2ζ2−1

[

cos(ωd∆)− ζ sin(ωd∆)√
1−ζ2

]

+

+
A3e

2ωnζ∆

2ζ2−1

[

cos(2ωd∆)− ζ sin(2ωd∆)√
1−ζ2

]

(13)
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The ACIST ACIST with OATF

ACIST with OATF - Cont.

For zero vibration we set

0= A1 + A2 + A3

C= 0

S= 0 (14)

which yields:

A3= −KKζ
e−ωnζ∆−cos(ωd∆)+ζ̀ sin(ωd∆)
2 cos(ωd∆)−(eωnζ∆+e−ωnζ∆)

(15)

A2= −A3
1−e2ωnζ∆(cos(2ωd∆)−ζ̀ sin(2ωd∆))
1−eωnζ∆(cos(ωd∆)−ζ̀ sin(ωd∆))

(16)

A1= −A2 − A3 (17)

where: K = Adωn

2RA sin(ωn∆)
, Kζ =

2ζ2−1√
1−ζ2

, ζ̀ = ζ√
1−ζ2

13 / 19



The ACIST ACIST via Optimization

ACIST via Optimization

Same results can be obtained by the following: Consider the dynamic
state-space equations:

ẋ(t) =

Γ
︷ ︸︸ ︷[

0 1

−ω2
n −2ζωn

]

x(t)+

[
0

ω2
n

]

︸︷︷︸
B

u(t)

y(t) =
[
1 0

]

︸ ︷︷ ︸

C

x(t) (18)

The solution x(t) is

x(t) = φ(t, 0)x(0) + RA

∫ t

0

φ(t, τ)B

3∑

j=1

Ajδ(t − (j − 1)∆)dτ (19)

φ(t, τ) = eΓ(t−τ) - state transition matrix from τ to t.
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The ACIST ACIST via Optimization

ACIST via Optimization - Cont.

Solving the integral in (19) for t ≥ 2∆ gives

x(t) = φ(t, 0)x(0) + Ψ(t)fA ∀t ≥ 2∆ (20)

where

Ψ(t) =
[
Φ[2∆](t)− Φ[0](t),Φ[2∆](t)− Φ[∆](t)

]
(21)

fA = RA[A1,A2]
T (22)

and

Φ[tk ]
(t)=e−ζωn (t−tk )





ζ̀ sin(ωd (t−tk ))+cos(ωd (t−tk ))

− ωd
1−ζ2

sin(ωd (t−tk ))



, tk=0,∆,2∆ (23)
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The ACIST ACIST via Optimization

ACIST via Optimization - Cont.

For zero residual vibration at t ≥ 2∆ we set x(2∆) = [0, 0]T .
Minimize

J = 1
2
x(2∆)TW x(2∆) (24)

with W some weighting matrix. Substituting (20) into (24) and
solving for t = 2∆

J= 1
2
(φ(2∆,0)x(0))TWφ(2∆,0)x(0)+

+ 1
2
(Ψ(2∆)fA)

TWΨ(2∆)fA+(φ(2∆,0)x(0))TWΨ(2∆)fA (25)

Differentiating (25) with respect to fA and equating to zero:

fA=−[Ψ(2∆)TWΨ(2∆)]
−1
[(φ(2∆,0)x(0))TWΨ(2∆)] (26)

A direct solution for (26) with W = I will give the same results as
in (15) and (16). Furthermore, it can be shown that the second
optimality condition ∂2J

∂f 2
A

is fulfilled and Ψ(2∆)TWΨ(2∆) is invertible

when sin(ωn∆) 6= 0.
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Test Results

Test Results

To validate the results we used a simple test-bed

zero-line

Solenoid

dc-Motor+Encoder

Rod
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Test Results

Test Results - Cont.

Test results of the ACIST with OATF shaper
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Conclusions

Conclusions

A technique to reduce the residual vibration of a flexible system
was presented

The shaper parameters are obtained via algebraic solution based
on the disturbance and system parameters

It was shown that the shaper is optimal in terms of residual
vibration

Hardware experiments verified the technique performance
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