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Motivation

@ Flexible structures would be easier to control when vibrational
modes are attenuated. Thus, there is motivation to combine a
pre-filter and feedback.

@ Input Shaping: shape the input in such a way that the
vibration modes are not excited

@ Traditional input shaping posses a weak point: Inability to
suppress vibrations caused by external disturbances. Only
command-incurred vibrations are attenuated

@ Thus, we will focus on:

Applying input shaping approaches to flexible systems to re-
duce disturbance-incurred residual vibrations
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Problem Definition

Consider a crane conveying a load through a rest-to-rest manoeuver.
Once the manoeuver is accomplished, the load is dropped to its final
location. Dropping the load incurs a sudden change in the external
force induced by the load on the crane. The sudden change in the
external force may be seen as an external, impulse-like, disturbance.
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Introduction: Input Shaping

The term Input Shaping®© (introduced by Singer et al, 1990):
The operation of convolving a desired input command with an
impulse sequence J

© Applying an impulse, Ay, will cause system to vibrate

© Applying second impulse, Ay, at a later time cancels vibration

© The second impulse must be applied at the correct time and
must have the appropriate magnitude for complete cancelation
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Introduction: Input Shaping

Introduction: Input Shaping - Cont.

The amplitudes and time instances of the impulses in an input shaper
are determined by solving a set of constraint equations. A variety of
constraints are used:

@ Robustness constraints (Singer et al. 1990)

@ Residual vibration constraints (Singhose et al. 1996, 1997)
@ Impulse amplitude constraints (Singhose et al. 1994)

@ Optimal time requirement (Pao & Singhose, 1995)
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Introduction: Input Shaping - Cont.

For example, the ZV shaper (Singer et al, 1990), for 2" Ord. linear
system, with damping ratio (, and damped natural frequency,

Wy = wpy/1 —(?:

t1 =0 tb =05T4 Time
—¢n
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Introduction: Input Shaping - Cont.

In the ZV-shaper, t, depends on T, and cannot be shortened
arbitrarily. This is a major weakness of the ZV-shaper.

@ A limited attempt to overcome this drawback was presented by
Singhose et al. (1994), where negative impulses are allowed in
the filter. Yet, impulse instances still depends on Ty.

@ A different approach is taken by Magee & Book (1998) where
the Optimal Arbitrary Time-delay Filter (OATF) is introduced:

3

ISoate(t) = > Ais(t—(j—1)-A) (1)

Jj=1

d(t) - Dirac delta function
A - Shaper time delay, arbitrarily chosen
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Introduction: Input Shaping - Cont.

Chang et al (2004) introduce the CIST - Commandless Input
Shaping Technique:

Disturbance d(t)

Acctuator

Command Input
r(t) =0
ERACASE 4

@ When a disturbance is induced, a set of two impulse is directly
applied to the system via an actuator

@ An analytic solution for the shaper parameters for different
actuator dynamics and 2 types of disturbances was proposed

@ Yet, dynamic systems can not be controlled by direct impulses,

thus, CIST seems impractical !!.
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SlinE AR
ACIST - Concept

Consider:

ORI

,,,,,,,,,,,,,,,,,,,,,,

y(t) - Output
ra(t) - Auxiliary reference command
IS - Impulse set which convolves ra(t)
The disturbance:

d(t) = Ago(t — tg) (2)
We seek to bring the total response, y(t), to zero after some finite
8t/i[191e t > t, by a well designed ACIST



e/ T
Simple ACIST

Assume:
IS(t) = A1d(t — t1) + A(t — o (3)
ra(t) = Ra- 1(t,)
The output, y(t), is
y(t) = Ra(A1 + Ax) + Rae™“"t\/C2 4 S2Zsin (wyt +10)  (4)
where 1) is a phase shift and (after setting A, = —A;)

A1l

Agwn

Sden Vi—e Apewnt 7r ¢ cos(wqt)
C = R 1-¢ M Z_ SP\dR2)

1—C2+2C2—1 2021 cos<2 wdt2>+ T

S = A Aeret [sin (z — wdt2> + ¢ sintwats) sin(wdtz)] (5)

202-1 22-1 2 J1-C?
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SlinE AR
Simple ACIST - Cont.

For zero vibration we set C =0 and S = 0, which yields:
Agwn(22-1) ¢ o |  cos(wqta)

+ = e“"*" [sin (wgt) + 6

R ¢ V1O et ©

[ t.
1= e | cos(wyty) — Csinwatz)

For ( = 0 we get

=" n=024 .. 00 (8)
Wy
A]_ — 0 (9)

For ¢ # 0 we solve numerically to get t,, and
_ Aqwn(3¢% —2¢* — 1)e wntt

R\/1— (?sin(wqty)

Ay
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LLCWXGRY NN Simple ACIST

Simple ACIST - Cont.

Solution for the damped case via simulation

ACIST Simulation Results
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The simple ACIST reduces residual vibration drastically for t > t,.
However, the magnitude of the transient response is much higher
than the response without ACIST !!
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CSEST ity ORI
ACIST with OATF

Enhance the ACIST by using the 3-impulse OATF

1Soatr(1)=3"2; Aid(t—(j—1)-A) (11)
The total response is
Y(£)=Ra(A1+Ap+A3)+RaeS“nt/C21 5 sin(wyt+1) (12)
where
A1¢ ”
_ Agwn V1=¢2 | Aye¥n . ¢ cos(wyA)
O it YT R [snteat ¢

Age2wnCA [ | ¢ cos(wyA)
3_262T {sm(2wdA)+T52

s A +A2ewn<A |:cos(wdA)— Csin(wdA):| +

T2 T2 V12
Age2wnChA _ ¢sin(2wyA)
+ 221 cos(2wgA) e (13)
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N L LJAC LR ACIST with OATF
ACIST with OATF - Cont.

For zero vibration we set

0: Al + A2 + A3
C=0
5=0
which yields:
e~ wnSA _cos(wgA)+C sin(wgA
A3: _KKC 2cos(wdA)—((ei’nC)Z_j-e*‘(“ﬂgA))
. 1—e2“”<A(cos(2wdA)—g\“sin(2wdA))
Ao= —As 1—ewn<A(cos(wdA)—€sin(wdA))
A= —Ay — As
. _ Agwn _ 231 - ¢
where: K = 2RAsi‘;(wﬂA), K = Jo (= e
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ACIST via Optimization

Same results can be obtained by the following: Consider the dynamic
state-space equations:

r
——
. 0 1 0
x(t) = 2 2w x(t)+ 2 u(t)
~~~
B
vy =[1 o]« (18)
C

The solution x(t) is
x(t) = ¢(t,0)x(0) + Ra /Otgzﬁ(t,T)BZAjé(t —(—1)A)dr (19)

14@(57 7) = e"(!=7) _ state transition matrix from 7 to t.



ACIST via Optimization
ACIST via Optimization - Cont.

Solving the integral in (19) for t > 2A gives

x(t) = ¢(t,0)x(0) + W(t)fa Vt>2A

where
W(t) = [Ppa)(t) — Pi(t), Ppaj(t) — a)(t)]
fA - RA[Al,Az]T
and \
O, (£)=e=Cn(t=t) C5”‘(%1(:;tk))-ircos(t«fd(t—fk))  4—0.A2A

- 1—¢2 Sin(wd(t_tk))
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ACIST via Optimization
ACIST via Optimization - Cont.

For zero residual vibration at t > 2A we set x(2A) = [0,0] .
Minimize

J = 3x(2A)TWx(2A) (24)
with W some weighting matrix. Substituting (20) into (24) and
solving for t = 2A

J=1(6(24,0)x(0)) T W(24,0)x(0)+
+1(W(2D)fa) "WV (2A) fa+(4(2A,0)x(0)) T WW(2A)f, (25)

Differentiating (25) with respect to f4 and equating to zero:
fa=—[W(28)T W (24)] " [(#(24,0)x(0) T W (24)] (26)

A direct solution for (26) with W = [ will give the same results as

in (15) and (16). Furthermore, it can be shown that the second
optimality condition g%‘{ is fulfilled and W(2A)T WW(2A) is invertible
when sin(w,A) # 0.
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Test Results

Test Results

To validate the results we used a simple test-bed

zero-line

i

dc-Motor+Encoder




Test Results - Cont.

Test results of the ACIST with OATF shaper

ACIST with OATF Test Results
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Conclusions

@ A technique to reduce the residual vibration of a flexible system
was presented

@ The shaper parameters are obtained via algebraic solution based
on the disturbance and system parameters

@ It was shown that the shaper is optimal in terms of residual
vibration

@ Hardware experiments verified the technique performance
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