Analysis of stability transitions in a microswimmer with superparamagnetic links
 YUVAL HARDUF, YIZHAR OR
 TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

Introduction

- Dreyfus (2005): Introduced a swimmer actuated by an external magnetic field of the form:

$$
\binom{1}{\beta \sin (\omega t)} B_{x}
$$

Dreyfus (Nature 2005) - supplementary video 2

Introduction

- Dreyfus (2005): Introduced a swimmer actuated by an external magnetic field of the form:

$$
\binom{1}{\beta \sin (\omega t)} B_{x}
$$

- Gauger and Stark (2006): Observed a change of swimming direction in numerical simulations for large β and S_{p} values
- Dreyfus (2005): Introduced a swimmer actuated by an external magnetic field of the form:

$$
\binom{1}{\beta \sin (\omega t)} B_{x}
$$

- Gauger and Stark (2006): Observed a change of swimming direction in numerical simulations for large β and S_{p} values
- Roper (2008): Observed a stability transition in experiments on "ineffective swimmers" for $\beta>\sqrt{2}$

Roper et al (PRSA 2008)

Introduction

- Dreyfus (2005): Introduced a swimmer actuated by an external magnetic field of the form:

$$
\binom{1}{\beta \sin (\omega t)} B_{x}
$$

- Gauger and Stark (2006): Observed a change of swimming direction in numerical simulations for large β and S_{p} values
- Roper (2008): Observed a stability transition in experiments on "ineffective swimmers" for $\beta>\sqrt{2}$
> Our goal: analyzing the swimmer using theoretical models

Microswimmer modelling

- Low Reynolds number hydrodynamics
- No inertia - quasi-static motion

$$
\sum F_{i}=0, \sum M_{i}=0
$$

> 3 physical mechanisms:

- Elasticity
- Magnetic torque
- Viscous drag

Robotic microswimmer modelling - 7 magnetic forces

- Magnetic moment - relates the field to the torque:

$$
L=\mathcal{M} \times B
$$

$>$ Ferromagnetic materials - constant magnetic moment:

$\mathcal{M}=$ constant

- Paramagnetic materials - induced magnetic moment:

$$
\mathcal{M}=\chi \cdot B
$$

Robotic microswimmer modelling calculating drag: RFT

- RFT - Resistive Force Theory:

$$
F_{t}=-c_{t} \cdot v_{t}, F_{n}=-c_{n} \cdot v_{n}, M=-c_{m} \omega
$$

- For slender link:

$$
c_{n} \approx 2 c_{t}=\frac{4 \pi \mu l}{\ln \left(\frac{l}{a}\right)}, c_{m}=\frac{c_{n} l^{2}}{12}
$$

- For spherical head:

$$
c_{t}=c_{n}=6 \pi \mu r, c_{m}=8 \pi \mu r^{3}
$$

Numerical analysis of multilink model

- Spherical link with a tail that consists of a chain of slender, superparamagnetic links, connected by torsion springs.
- Hydrodynamic and magnetic interactions are neglected
- External magnetic field: $\boldsymbol{B}=\binom{1}{\beta \sin (\omega t)} B_{x}$

Comparison to experiments

- Comparison between our numerical results and the experimental results of Dreyfus et al.
$>S p=\frac{L}{\left(\frac{\kappa}{c_{n} \omega}\right)^{\frac{1}{4}}}$

Further investigation: Bi-stability and optimal β

Analysis of a 2 link model

- We base our model on the (ferromagnetic) model introduced by Gutman and Or (2014), that did not exhibit stability transitions
- Two slender links, one paramagnetic, one non-magnetic, connected by a torsion spring
- Drag forces calculated using RFT (slender links)
- Torsion spring: $\tau=-k \phi$
- External magnetic field: $\boldsymbol{B}=\binom{1}{\beta \sin (\omega t)} B_{x}$
- The magnetic torque generated:
$L=\Delta \chi V(\boldsymbol{t} \times \boldsymbol{B})(\boldsymbol{t} \cdot \boldsymbol{B}) \sim \sin (2 \gamma)$
- (For ferromagnetic link $L \sim \sin (\gamma)$)

Stability of a single magnetic link in a constant field

- Ferromagnetic link: $L \sim \sin (\gamma)$

$$
B=\text { const }
$$

- 2 equilibrium states

```
stable, }\gamma=
unstable, }\gamma=
```

- Paramagnetic link: $L \sim \sin (2 \gamma)$

$$
B=\mathrm{const}
$$

- 4 equilibrium states
- unstable, $\gamma= \pm \frac{\pi}{2}$

Analysis of a 2 link model -

- 3 characteristic time scales:
$t_{\omega}=\frac{1}{\omega}=$ actuation, $t_{m}=\frac{c_{t} l^{3}}{6 \Delta \chi B_{x}^{2} v}=\frac{\text { viscocity }}{\text { magnetic }}, t_{k}=\frac{c_{t} l^{3}}{12 k}=\frac{\text { viscosity }}{\text { elasticity }}$
> we also denote $\alpha=\frac{t_{m}}{t_{k}}=\frac{\text { magnetic }}{\text { elasticity }}$
- Infinite domain dictates that the dynamics are independent of x, y
$\binom{\dot{x}}{\dot{y}}=F(\theta, \phi)$

$$
\left\{\begin{array}{l}
\dot{\theta}=\frac{\phi(\cos (\phi)+3)^{2}}{2(\cos (2 \phi)-17)} \frac{1}{t_{k}}-\frac{(\cos (2 \phi)+19)\left(\sin (2 \theta)\left(\beta^{2} \sin ^{2}(\omega t)-1\right)+2 \beta \cos (2 \theta) \sin (\omega t)\right)}{4(\cos (2 \phi)-17)} \frac{1}{t_{m}} \\
\dot{\phi}=\frac{(\cos (\phi)+3)^{2}((\sin (2 \theta)-\beta \sin (\omega t)(2 \cos (2 \theta)+\beta \sin (2 \theta) \sin (\omega t))))}{2(\cos (2 \phi)-17)} \frac{1}{t_{m}}+\frac{(\cos (\phi)+3)^{2} \phi}{(\cos (2 \phi)-17)} \frac{1}{t_{k}}
\end{array}\right.
$$

Fast actuation and soft swimmer Method of Multiple scales

$>$ Taking the ratios $\frac{t_{\omega}}{t_{m}}, \frac{t_{\omega}}{t_{k}} \approx O(\epsilon) \ll 1$
$>$ Using the method of multiple scales

- Introducing fast and slow time scales: $T_{0}=\frac{t}{t_{m}}, T_{1}=\epsilon t$
- Expanding the solutions

$$
\boldsymbol{q}=\boldsymbol{q}_{\mathbf{0}}\left(T_{0}, T_{1}\right)+\epsilon \boldsymbol{q}_{1}\left(T_{0}, T_{1}\right)+\epsilon^{2} \boldsymbol{q}_{\mathbf{2}}\left(T_{0}, T_{1}\right)+\cdots=\boldsymbol{q}_{\mathbf{0}}+\Delta \boldsymbol{q}
$$

- Equating coefficients of ϵ
$>$ Requiring elimination of secular terms
$\triangle 0^{\text {th }}$ order is only slow dynamics:

$$
\theta_{0}=\Theta_{0}\left(T_{1}\right), \phi_{0}=\Phi_{0}\left(T_{1}\right)
$$

Fast actuation and soft swimmercontinued

- Slow dynamics equations obtained from eliminating secular terms
Equilibrium points at $\Theta_{e}=\left\{0, \frac{\pi}{2}\right\}, \Phi_{e}=0$

$$
\begin{aligned}
& D_{1} \Theta_{0}=\frac{d \Theta_{0}}{d T_{1}}=\frac{4 \alpha \Phi_{0}\left(\cos \left(\Phi_{0}\right)+3\right)^{2}-\left(\beta^{2}-2\right) \sin \left(2 \Theta_{0}\right)\left(\cos \left(2 \Phi_{0}\right)+19\right)}{8\left(\cos \left(2 \Phi_{0}\right)-17\right)} \\
& D_{1} \Phi_{0}=\frac{d \Phi_{0}}{d T_{1}}=\frac{\left(\cos \left(\Phi_{0}\right)+3\right)\left(4 \alpha \Phi_{0}-\left(\beta^{2}-2\right) \sin \left(2 \Theta_{0}\right)\right)}{8\left(\cos \left(\Phi_{0}\right)-3\right)}
\end{aligned}
$$

Fast actuation and soft swimmer-
 continued

- Slow dynamics equations obtained from eliminating secular terms
- Equilibrium points at $\Theta_{e}=\left\{0, \frac{\pi}{2}\right\}, \Phi_{e}=0$
- Linearization about both equilibrium points yields:

Linearization about $\Theta_{e}=0$
Stable for $\beta<\sqrt{2}$
Unstable for $\beta>\sqrt{2}$
Corresponds to $V_{x} \neq 0, V_{y}=0$ (not shown)

Linearization about $\Theta_{e}=\frac{\pi}{2}$
Unstable for $\beta<\sqrt{2}$
Stable for $\beta>\sqrt{2}$
Corresponds to $V_{x}=0, V_{y} \neq 0$ (not shown)

Fast actuation and stiff swimmer perturbation expansion

$>$ Taking the ratios $\frac{t_{\omega}}{t_{m}}=O(\epsilon) \ll 1, \frac{t_{\omega}}{t_{k}}=O(1)$

$$
\begin{aligned}
& \dot{\theta}=\frac{\phi(\cos (\phi)+3)^{2}}{2(\cos (2 \phi)-17)} \frac{1}{t_{k}}-\frac{(\cos (2 \phi)+19)\left(\sin (2 \theta)\left(\beta^{2} \sin ^{2}(\omega t)-1\right)+2 \beta \cos (2 \theta) \sin (\omega t)\right)}{4(\cos (2 \phi)-17)} \frac{1}{t_{m}} \\
& \dot{\phi}=\frac{(\cos (\phi)+3)^{2}((\sin (2 \theta)-\beta \sin (\omega t)(2 \cos (2 \theta)+\beta \sin (2 \theta) \sin (\omega t))))}{2(\cos (2 \phi)-17)} \frac{1}{t_{m}}+\frac{(\cos (\phi)+3)^{2} \phi}{(\cos (2 \phi)-17)} \frac{1}{t_{k}}
\end{aligned}
$$

Fast actuation and stiff swimmer perturbation expansion

$>$ Taking the ratios $\frac{t_{\omega}}{t_{m}}=O(\epsilon) \ll 1, \frac{t_{\omega}}{t_{k}}=O(1)$

- Substituting $\phi=\phi_{0}+\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots$ and equating coefficients of ϵ

$$
\begin{aligned}
& \dot{\theta}=\frac{\phi(\quad+3)^{2}}{2(\quad-17)} \frac{1}{t_{k}}-\frac{\left(\cos (2 \phi+19)\left(\sin (2 \theta)\left(\beta^{2} \sin ^{2}(\omega t)-1\right)+2 \beta \cos (2 \theta) \sin (\omega t)\right)\right.}{4(\cos (2 \phi)-17)} \frac{1}{t_{m}} \\
& \dot{\phi}=\frac{(\quad+3)^{2}((\sin (2 \theta)-\beta \sin (\omega t)(2 \cos (2 \theta)+\beta \sin (2 \theta) \sin (\omega t))))}{2\left(\frac{1}{t_{m}}+\frac{(\quad+3)^{2} \phi}{(17)} \frac{1}{t_{k}}\right.}
\end{aligned}
$$

Fast actuation and stiff swimmer perturbation expansion

> Taking the ratios $\frac{t_{\omega}}{t_{m}}=O(\epsilon) \ll 1, \frac{t_{\omega}}{t_{k}}=O(1)$
\checkmark Substituting $\phi=\phi_{0}+\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots$ and equating coefficients of ϵ

- $1^{\text {st }}$ order approximation yields a set of equations linear in ϕ
$\dot{\theta}=-\frac{1}{2} \alpha \phi-\frac{5}{16}\left(1-\beta^{2} \sin ^{2}(\omega t)\right) \sin (2 \theta)+\frac{5}{8} \beta \sin (\omega t) \cos (2 \theta)$
$\dot{\phi}=-\phi \alpha-\frac{1}{2}\left(1-\beta^{2} \sin ^{2}(\omega t)\right) \sin (2 \theta)+\beta \sin (\omega t) \cos (2 \theta)$

Fast actuation and stiff swimmer perturbation expansion

- Taking the ratios $\frac{t_{\omega}}{t_{m}}=O(\epsilon) \ll 1, \frac{t_{\omega}}{t_{k}}=O(1)$
\checkmark Substituting $\phi=\phi_{0}+\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots$ and equating coefficients of ϵ
- $1^{\text {st }}$ order approximation yields a set of equations linear in ϕ
- Re-writing the system as a $2^{\text {nd }}$ order ODE in θ only
- periodic solution $\theta_{p}(t)$ oscillating about $\theta_{e}=\left\{0, \frac{\pi}{2}\right\}$
$\ddot{\theta}+\left(\alpha+\frac{5}{8} \cos (2 \theta)\left(1-\beta^{2} \sin ^{2}(\omega t)\right)+\frac{5}{4} \beta \sin (2 \theta) \sin (t \omega)\right) \dot{\theta}+\frac{1}{16}\left(\alpha\left(1-\beta^{2} \sin ^{2}(\omega t)\right)-10 \beta^{2} \omega \sin (2 t \omega)\right) \sin (2 \theta)=\frac{1}{8} \beta(\alpha \sin (t \omega)+5 \omega \cos (t \omega)) \cos (2 \theta)$

Fast actuation and stiff swimmer -

> Taking the ratios $\frac{t_{\omega}}{t_{m}}=O(\epsilon) \ll 1, \frac{t_{\omega}}{t_{k}}=O(1)$

- Substituting $\phi=\phi_{0}+\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots$ and equating coefficients of ϵ
- $1^{\text {st }}$ order approximation yields a set of equations linear in ϕ
- Re-writing the system as a $2^{\text {nd }}$ order ODE in θ only

- periodic solution $\theta_{p}(t)$ oscillating about $\theta_{e}=\left\{0, \frac{\pi}{2}\right\}$
$\ddot{\theta}+\left(\alpha+\frac{5}{8} \cos (2 \theta)\left(1-\beta^{2} \sin ^{2}(\omega t)\right)+\frac{5}{4} \beta \sin (2 \theta) \sin (t \omega)\right) \dot{\theta}+\frac{1}{16}\left(\alpha\left(1-\beta^{2} \sin ^{2}(\omega t)\right)-10 \beta^{2} \omega \sin (2 t \omega)\right) \sin (2 \theta)=\frac{1}{8} \beta(\alpha \sin (t \omega)+5 \omega \cos (t \omega)) \cos (2 \theta)$
Inclined Kapitza pendulum: $\ddot{\psi}-\left(\frac{g}{l}+\frac{a \omega^{2}}{l} \cos (\varphi) \cos (\omega t)\right) \sin (\psi)=-\frac{a \omega^{2}}{l} \sin (\varphi) \cos (\omega t) \cos (\psi)$

Variational equation

$>$ Assuming a solution of the form

$$
\theta(t)=\theta_{p}(t)+\delta(t)
$$

Substitute solution form into nonlinear equation
$>$ Expand the equation about $\delta=0$

- A linear Hill equation in δ is obtained:

$$
\ddot{\delta}+p_{1}\left(\theta_{p}, t\right) \dot{\delta}+p_{2}\left(\theta_{p}, t\right) \delta=0
$$

Approximation of θ_{p}

$>$ Linearizing the $2^{\text {nd }}$ order ODE in θ about $\theta_{e}=0, \frac{\pi}{2}$ yields a Hill equation of the form

$$
\ddot{\tilde{\theta}}+\left(A_{1}+2 B_{1} \cos (2 t \omega)\right) \dot{\tilde{\theta}}+\left(A_{2}+2 B_{2} \cos (2 t \omega)+2 \omega C_{2} \sin (2 t \omega)\right) \tilde{\theta}=f(\alpha, \beta, \omega, t)
$$

where $\tilde{\theta}=\theta-\theta_{c}$
$>$ Using harmonic balance, an approximation of the periodic solution is obtained:
$>\tilde{\theta} \approx \tilde{\theta}_{K}=\sum_{k=1}^{K} a_{k} \cos (k \omega t)+b_{k} \sin (k \omega t)$

$$
\begin{aligned}
& A_{1}=\alpha+\frac{5}{16}\left(\beta^{2}-2\right) \cos \left(2 \theta_{e}\right), A_{2}=\frac{1}{16} \alpha\left(\beta^{2}-2\right) \cos \left(2 \theta_{e}\right) \\
& B_{1}=-\frac{5}{32} \beta^{2} \cos \left(2 \theta_{e}\right), B_{2}=-\frac{1}{32} \alpha \beta^{2} \cos \left(2 \theta_{e}\right) \\
& C_{2}=\frac{5}{16} \beta^{2} \cos \left(2 \theta_{e}\right)
\end{aligned}
$$

$>\theta_{p}(t) \approx \theta_{e}+\tilde{\theta}_{K}(t)$

Hill's determinant method

- Expanding the coefficients of δ, δ into a Fourier series yields a Hill equation

$$
\ddot{\delta}+p_{1}(t) \dot{\delta}+p_{2}(t) \delta=0 \text {, where } p_{1}, p_{2} \text { periodic, with period } T=\pi / \omega
$$

- Solutions corresponding to stability transitions have a period of $\frac{2 \pi}{\omega}$ (Floquet theory)
- Substituting $\delta=M_{0}+\sum_{k=1}^{K} M_{k} \cos (n \omega t)+N_{k} \sin (n \omega t)$
$>$ Equating coefficients of each harmonic
> Obtaining a homogenous, algebraic system $\boldsymbol{H} \boldsymbol{x}=0$
- We require that $\operatorname{det}(H)=0$
$H(\alpha, \beta, \omega)=\left(\begin{array}{ccccc}H_{11} & 0 & 0 & H_{14} & H_{15} \\ 0 & H_{22} & H_{23} & 0 & 0 \\ 0 & H_{32} & H_{33} & 0 & 0 \\ H_{41} & 0 & 0 & H_{44} & H_{45} \\ H_{51} & 0 & 0 & H_{54} & H_{55}\end{array}\right)$
- The solutions of $\operatorname{det}(\boldsymbol{H})=\mathbf{0}$ are the stability transition curves

Analytical vs Numerical

Stability transition curves in $\beta-\omega$ plane for $\alpha=10$

Stability transition curves in β - ω plane for $\alpha=5$

Stability transition curves in $\beta-\omega$ plane for $\alpha=100$

Zhang and Jin experiments

- Experiments conducted by the research group of Professor Zhang from the Chinese University of Hong Kong
- Swimmer fabricated out of Ppy elastic tail embedded with paramagnetic paricles

Model fitting

The resultant parameters: $t_{m}=t_{k}=0.1$, no clear asymptotic limit!

Speed vs β

Stability limits

Thank you! Questions?

Contact me: Yuval.Harduf@technion.ac.il

