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 Dreyfus (2005): Introduced a swimmer actuated 

by an external magnetic field of the form:
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 Roper (2008): Observed a stability transition in 

experiments on “ineffective swimmers” for 𝛽 > 2

 Our goal: analyzing the swimmer using 

theoretical models
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Microswimmer modelling

 Low Reynolds number hydrodynamics

 No inertia – quasi-static motion

෍𝐹𝑖 = 0 ,෍𝑀𝑖 = 0

 3 physical mechanisms:

 Elasticity

Magnetic torque

Viscous drag
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Robotic microswimmer modelling –
magnetic forces

 Magnetic moment – relates the field to the torque:

𝑳 = 𝓜×𝑩

 Ferromagnetic materials – constant magnetic moment:

𝓜= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

 Paramagnetic materials – induced magnetic moment:

𝓜= 𝝌 ⋅ 𝑩
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Robotic microswimmer modelling –
calculating drag: RFT

 RFT – Resistive Force Theory:

 For slender link:

 For spherical head:
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Numerical analysis of
multilink model

 Spherical link with a tail that consists of a chain of slender, 

superparamagnetic links, connected by torsion springs.

 Hydrodynamic and magnetic interactions are neglected

 External magnetic field: 𝑩 =
1

𝛽 sin 𝜔𝑡
𝐵𝑥
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Comparison to experiments

Speed vs. frequency
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 Comparison between 

our numerical results 

and  the experimental 

results of Dreyfus et al.

 𝑆𝑝 =
𝐿

𝜅

𝑐𝑛𝜔

1
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Further investigation:
Bi-stability and optimal 𝛽
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Bistability
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Analysis of a 2 link model

 We base our model on the (ferromagnetic) model introduced by 

Gutman and Or (2014), that did not exhibit stability transitions

 Two slender links, one paramagnetic, one non-magnetic, 
connected by a torsion spring

 Drag forces calculated using RFT (slender links)

 Torsion spring: 𝜏 = −𝑘𝜙

 External magnetic field: 𝑩 =
1

𝛽 sin 𝜔𝑡
𝐵𝑥

 The magnetic torque generated:
𝑳 = Δ𝜒𝑉 𝒕 × 𝑩 𝒕 ⋅ 𝑩 ~ sin 2𝛾

 (For ferromagnetic link 𝑳~ sin 𝛾 )
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Stability of a single magnetic link 
in a constant field

 Ferromagnetic link: 𝐿~ sin 𝛾

 2 equilibrium states

 Paramagnetic link: 𝐿~ sin 2𝛾

 4 equilibrium states
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𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 0

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 𝜋

𝐵 = 𝑐𝑜𝑛𝑠𝑡

𝐵 = 𝑐𝑜𝑛𝑠𝑡

𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 0, 𝜋 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = ±
𝜋
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Analysis of a 2 link model –
Continued

 3 characteristic time scales:

𝑡𝜔 =
1

𝜔
= 𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑡𝑚 =

𝑐𝑡𝑙
3

6Δ𝜒𝐵𝑥
2𝑣
=

𝑣𝑖𝑠𝑐𝑜𝑐𝑖𝑡𝑦

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐
, 𝑡𝑘 =

𝑐𝑡𝑙
3

12𝑘
=

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

 we also denote 𝛼 =
𝑡𝑚

𝑡𝑘
=

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

 Infinite domain dictates that the

dynamics are independent of 𝑥, 𝑦
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Fast actuation and soft swimmer –
Method of Multiple scales

 Taking the ratios 
𝑡𝜔

𝑡𝑚
,
𝑡𝜔

𝑡𝑘
≈ 𝑂 𝜖 ≪ 1

 Using the method of multiple scales

 Introducing fast and slow time scales: 𝑇0 =
𝑡

𝑡𝑚
, 𝑇1 = 𝜖𝑡

 Expanding the solutions 

𝒒 = 𝒒𝟎 𝑇0, 𝑇1 + 𝜖𝒒𝟏 𝑇0, 𝑇1 + 𝜖2𝒒𝟐 𝑇0, 𝑇1 +⋯ = 𝒒𝟎 + 𝚫𝒒

 Equating coefficients of 𝜖

 Requiring elimination of secular terms

 0th order is only slow dynamics:

𝜃0 = Θ0 𝑇1 , 𝜙0 = Φ0 𝑇1
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Fast actuation and soft swimmer–
continued

 Slow dynamics equations obtained from

eliminating secular terms

 Equilibrium points at Θ𝑒 = 0,
𝜋

2
, Φ𝑒 = 0
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Linearization about 𝚯𝒆 =
𝝅

𝟐
Linearization about 𝚯𝒆 = 𝟎

Unstable for 𝜷 < 𝟐Stable for 𝜷 < 𝟐

Stable for 𝜷 > 𝟐Unstable for 𝜷 > 𝟐

Corresponds to 𝑽𝒙 = 𝟎,𝑽𝒚 ≠ 𝟎 (not shown)Corresponds to 𝑽𝒙 ≠ 𝟎,𝑽𝒚 = 𝟎 (not shown)

Stability transition for 𝜷 → 𝟐, with no dependence on 𝝎 is confirmed

Optimal 𝜷 for velocity in period is also found (not shown) 

Bistability regions are not observed

Fast actuation and soft swimmer–
continued

 Slow dynamics equations obtained from

eliminating secular terms

 Equilibrium points at Θ𝑒 = 0,
𝜋

2
, Φ𝑒 = 0

 Linearization about both equilibrium points yields:
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1

 Substituting 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯
and equating coefficients of 𝜖
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1

 Substituting 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯
and equating coefficients of 𝜖

 1st order approximation yields a set of

equations linear in 𝜙
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 1st order approximation yields a set of

equations linear in 𝜙

 Re-writing the system as a 2nd order ODE in 𝜃 only

 periodic solution 𝜃𝑝(𝑡) oscillating about 𝜃𝑒 = 0,
𝜋
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1

 Substituting 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯
and equating coefficients of 𝜖

 1st order approximation yields a set of

equations linear in 𝜙

 Re-writing the system as a 2nd order ODE in 𝜃 only

 periodic solution 𝜃𝑝(𝑡) oscillating about 𝜃𝑒 = 0,
𝜋

2

 Inclined Kapitza pendulum:
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Variational equation

Assuming a solution of the form
𝜃 𝑡 = 𝜃𝑝 𝑡 + 𝛿 𝑡

Substitute solution form into nonlinear equation

Expand the equation about 𝛿 = 0

A linear Hill equation in 𝛿 is obtained:
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Approximation of 𝜃𝑝

 Linearizing the 2nd order ODE in 𝜃 about 𝜃𝑒 = 0,
𝜋

2

yields a Hill equation of the form

 Using harmonic balance, an approximation of 

the periodic solution is obtained:

 ෨𝜃 ≈ ෨𝜃𝐾 = σ𝑘=1
𝐾 𝑎𝑘 cos 𝑘𝜔𝑡 + 𝑏𝑘 sin 𝑘𝜔𝑡

 𝜃𝑝 𝑡 ≈ 𝜃𝑒 + ෨𝜃𝐾 𝑡
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Hill’s determinant method

 Expanding the coefficients of 𝛿, ሶ𝛿 into a Fourier series

yields a Hill equation

ሷ𝛿 + 𝑝1 𝑡 ሶ𝛿 + 𝑝2 𝑡 𝛿 = 0, where 𝑝1, 𝑝2 periodic, with period 𝑇 = 𝜋/𝜔

 Solutions corresponding to stability transitions

have a period of 
2𝜋

𝜔
(Floquet theory)

 Substituting 𝛿 = 𝑀0 + σ𝑘=1
𝐾 𝑀𝑘 cos 𝑛𝜔𝑡 + 𝑁𝑘 sin 𝑛𝜔𝑡

 Equating coefficients of each harmonic

 Obtaining a homogenous, algebraic system 𝑯𝒙 = 0

 We require that det 𝐻 = 0

 The solutions of 𝐝𝐞𝐭 𝑯 = 𝟎 are the stability transition curves
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Zhang and Jin experiments

 Experiments conducted by the research group of

Professor Zhang from the Chinese University of Hong Kong

 Swimmer fabricated out of 

Ppy elastic tail embedded 

with paramagnetic paricles
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SEM image of the as-

prepared nanowires

Fe3O4 nanoparticles

Ppy

Speed vs frequencySpeed vs 𝛽



Model fitting 28

Speed vs 𝛽 Stability limits

The resultant parameters: 𝑡𝑚 = 𝑡𝑘 = 0.1, no clear asymptotic limit!



Thank you! Questions?
Contact me: Yuval.Harduf@technion.ac.il
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