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Intfroduction 2

» Dreyfus (2005): Infroduced a swimmer actuated
by an external magnetic field of the form:

(ﬁ sinl<wt))3x
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Dreyfus (Nature 2005) — supplementary video 2
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INnfroduction

» Dreyfus (2005): Infroduced a swimmer actuated
by an external magnetic field of the form:

(B siril(wt)) B

» Gauger and Stark (2006): Observed a change of
swimming direction in numerical simulations for
large f and S, values
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INnfroduction

» Dreyfus (2005): Infroduced a swimmer actuated
by an external magnetic field of the form:

|
(5 sincw)) B
» Gauger and Stark (2006): Observed a change of

swimming direction in numerical simulations for
large f and S, values

» Roper (2008): Observed a stability transition in
experiments on “ineffective swimmers” for g > /2

Roper et al (PRSA 2008)
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INnfroduction

» Dreyfus (2005): Infroduced a swimmer actuated
by an external magnetic field of the form:

(B siril(wt)) B

» Gauger and Stark (2006): Observed a change of
swimming direction in numerical simulations for
large f and S, values

» Roper (2008): Observed a stability transition in
experiments on “ineffective swimmers” for g > /2

» Our goal: analyzing the swimmer using
theoretical models
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Microswimmer modelling

» Low Reynolds number hydrodynamics
» No inertia — quasi-static motion

ZFL'=O,ZML'=O

» 3 physical mechanisms:
» Elasticity
» Magnetic forque
» Viscous drag
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Robotic microswimmer modelling - 7
magnetic forces

» Magnetic moment — relates the field o the torque:

L=MXB

» Ferromagnetic materials — constant magnetic moment:

M = constant
» Paramagnetic materials — induced magnetic moment:

M=y-B
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Robotic microswimmer modelling —
calculating drag: RFT

» RFT — Resistive Force Theory:

FE=-CHissEs=-¢C -v , M =—C ow

n m

» For slender link: A7yl G
C.~2C = o —

n t (Ij’m 12
In| —
a

c, =C =6mur,c =8xur’

» For spherical head:
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Numerical analysis of
mulfiink mode

» Spherical link with a tail that consists of a chain of slender,
superparamagnetic links, connected by ftorsion springs.

» Hydrodynamic and magnetic interactions are neglected

. 1
» External magnetic field: B = (ﬁ sin(a)t)) B,
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Comparison to experiments

Speed vs. frequency

» Comparison between
our numerical results
and the experimental
results of Dreyfus et al.

» Sp = =

10
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Further investigation:
BI-stability and optimal £

Swimming trajectory for differend ICs

V| vs 8, f=10[Hz] B=1.5 f=10[Hz] n=10
! 20

Optimal g

Bistability




Analysis of a 2 link model

» We base our model on the (ferromagnetic) model intfroduced by
Gutman and Or (2014), that did not exhibit stability tfransitions

» Two slender links, one paramagnetic, one non-magnetic,
connected by a torsion spring

» Drag forces calculated using RFT (slender links)
» Torsion spring: t = —k¢

.y S 1
» External magnetic field: B = (/3 sin(a)t)) By

» The magnetic torque generated:
L=AxV(txB)(t-B)~sin(2y)

» (For feromagnetic link L~ sin(y))

12
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tabillity of a single magnetic link

N

13

a constant field
Ll B = const
» Ferromagnetic link: L~ sin(y)
» 2 equilibrium states stable,y = 0 ®
unstable,y = ®
» Paramagnetic link: L~ sin(2y) = .
» 4 equilibrium states °
o T
stable,y = 0, unstable,y = iE
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Analysis of a 2 link model — 14
Continued
» 3 characteristic fime scales:
cel®>  wiscocity _ cl® _ wviscosity

1 .
t,, = — = actuation, t,, = —
@ w * "M 6AyB2v  magnetic’

t magnetic
» we also denote g = & = 2297
Lk elasticity

» Infinitfe domain dictates that the
dynamics are independent of x, y

o

5 Hleos(g) +3) 1 (cos(2¢) +19)(sin(2¢9)( B2sin?(at) —1)+2ﬁcos(26’)sin(a)t)) 1
" 2(cos(29)-17) t, 4(cos(24) —17) t
. (cos(¢#) +3)° ((sin(26) — Bsin(wt)(2cos(260) + Bsin(26) sin(wt)))) 1. (cos(¢) +3)°¢ 1
. 2(cos(2¢) —17) t  (cos(2¢)-17)t,

m

m

N elasticity
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Fast actuation and soft swimmer —
Method of Multiple scales

» Taking the ratios :—“’i—‘“ ~ 0(e) K1

m Uk

» Using the method of multiple scales

» Introducing fast and slow fime scales: T, = : ,T; = €t

tm
» Expanding the solutions
q = qo(To, T1) + €q1(To, T1) + €°q2(Ty, Ty) + -+ = qo + Aq
» EqQuating coefficients of €
» Requiring elimination of secular terms

» 0" order is only slow dynamics:
Oo = 0o(T1), pg = Po(T1)

15
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Fast actuation and soft swimmer—
continued

» Slow dynamics equations obtained from
eliminating secular terms

» Equilibrium points at 0, = {O, g},d)e =0

- de, 4aCDO(cos(CDO)+3)2-(,82-2)sin(2®o)(cos(2d)o)+19)

D,®
] el 8(cos(2d,)-17)

do, (cos(CDO)+3)(4ad>0-(,82-2)sin(2®0))
T 8(cos(®,)-3)

D, @,

16
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Fast actuation and soft swimmer—
continued

» Slow dynamics equations obtained from
eliminating secular terms

» Equilibrium points at 0, = {O, g»,CDB =0

» Linearization about both equilibrium points yields:

Linearization about 6, = 0 1

S (2
E('B —2) —Ea

%(ﬁZ—Z) a

©)
Stable for g < V2 [@Z] 5
Unstable for g > v2

0, Q)
®, Unstable for g < V2 :

Linearization about @, = >
CDOJ {

Stable for g > V2

Corresponds to V. # 0,V, = 0 (not shown) Corresponds to V,, = 0,V,, # 0 (not shown)

not shown

3
) -
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0,
@,

J
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Fast actuation and stiff swimmer —
perturbation expansion

» Taking the ratios :—‘“ =0() K1 i—: = 0(1)

i Heos() + 9 1 (cos(2¢)+19)(sin(29)(ﬂ2sin2(a)t)—1)+2/3cos(29)sin(a)t)) iy

2(cos(2¢) -17) t, 4(cos(2¢) —17) t
. (cos(¢) +3)*((sin(20) — Bsin(wt)(2cos(26) + Bsin(26) sin(«wt))))
& 2(cos(2¢) —17)

m

, (cos(#)+3)¢ 1
(cos(2¢) —17) t,

e
tm

18
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Fast actuation and stiff swimmer —
perturbation expansion

» Taking the ratios :—‘“ =0() K1 i—: = 0(1)

» Substituting ¢ = ¢y + €y + €%, + -
and equating coefficients of e

5 & +32 1 +19)(sin(26’)(,82 sinz(a)t)—1)+2,Bcos(29)sin(a)t)) 1

2 _17) ¢, 4( ~17) t
.o +3)*((sin(26) — Bsin(wt)(2cos(26) + Bsin(20)sin(at)))) 1 ( +3)°¢ 1
e 2o PRNE0s(20)-17) t,

19
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Fast actuation and stiff swimmer —
perturbation expansion

» Taking the ratios :—‘“ =0(e) K 1 i—‘l‘: = 0(1)

» Substituting ¢ = ¢y + €y + €%, + -
and equating coefficients of e

» 15" order approximation yields a set of
equations linear in ¢

I —%mﬁ—%(l—ﬁz sin? (wt) )sin(26) +§ﬁsin(a)t) cos(20)

b =—ga —%(1—,82 sin’ (wt) )sin(260) + Bsin(wt) cos(20)

20
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Fast actuation and stiff swimmer — 21
perturbation expansion

£10C OSSO

» Taking the ratios :—‘“ =0(e) K 1 i—‘l‘: = 0(1)

» Substituting ¢ = ¢y + €y + €%, + -
and equating coefficients of e

» 15" order approximation yields a set of
equations linear in ¢

» Re-wrifing the system as a 2"9 order ODE in 6 only

T

» periodic solution 6, (t) oscillating about 6, = {0, E}

.o

0+ (a + g cos(26) (1— S sin’ (a)t)) + %,Bsin(ze) sin(ta))j 0+ %(a (1—,[;’2 sinz(a)t)) —10,82a)sin(2ta)))sin(2<9) = %,B(a sin(tw) + 5w cos(tw)) cos(26)



Fast actuation and stiff swimmer — 22
perturbation expansion
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» Taking the ratios :—‘“ =0(e) K 1 i—‘l‘: = 0(1)
» Substituting ¢ = ¢ + €y + €2, +

and equating coefficients of € a - cos(wt)
» 15" order approximation yields a set of

equations linearin ¢
» Re-wrifing the system as a 2"9 order ODE in 6 only

» periodic solution 6, (t) oscillating about 6, = {0, —}

0+ (a + g cos(26) (1— S sin’ (a)t)) + %,Bsin(ze) sin(ta))j 0+ %(a (1—,[;’2 sinz(a)t)) —10,82a)sin(2ta)))sin(2<9) = %,B(a sin(tw) + 5w cos(tw)) cos(26)

» Inclined Kapitza pendulum: y?—[%ﬂ‘

2

CIO COS((p)COS(a)t)jSin(l//):—

2

""TJ sin (¢) cos (at)cos ()




Variational equation 23

» Assuming a solution of the form
0(t) = 0,(t) + 5(t)

» Substitute solution form into nonlinear equation
» Expand the equation about § = 0
» A linear Hill equation in § is obtained:

5+ py(6,,1)5+ p,(0,,1)5 =0
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Approximation of 6, 24
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> Linearizing the 29 order ODE in 6 about 6, = 0,
yvields a Hill equation of the form
0+ (A +2B, cos(2tw)) 8 +( A, + 2B, cos(2tw) + 20C, sin(2tew) 0 = f (a, B, o,t)

where 68 =6-6,

» Using harmonic balance, an approximation of
the periodic solution is obtained:

AL 5 78 1
> 0 ~ 0y = Yh_, a cos(kwt) + by, sin(kwt) A=a+35F ~D00s20). A = ca(F”-2)cos(20,)

N 5 L
> Hp (t) ~ 98 + HK (t) Blz_ﬁﬁ 005(298),Bz=—§a,3 cos(26,)

5
C, =— B°cos(20
2 16ﬂ ( e)



Hill's determinant method 25

V NV
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Expanding the coefficients of §, 6 into a Fourier series
yields a Hill equation

5+ p ()8 + p,(t)S = 0, where p,, p, periodic, with period T = n/w

Solutions corresponding to stability transitions
have a period of zf (Floquet theory)

Substituting 6 = My + YX_; My, cos(nwt) + Ny sin(nwt) H011 HO HO H014 H015
22 23

Equating coefficients of each harmonic H(e,f,0)=| 0 H,, H, 0 O

Obtaining a homogenous, algebraic system Hx = 0 Hy, 0 0 H, Hg

We require that det(H) = 0 Hy 0 0 Hg Hg

The solutions of det(H) = 0 are the stability transition curves




Analytfica

3
—@=0 analytical
— (=90 analytical
2.5 - = = =90 numerical

= = =@=0 numerical

1.5

Stability transition curves in f-w plane for a=10

3
— =0 analytical
—— =90 analytical
2.5 - = =9=0 numerical
= = =§#=90 numerical

vs Numerico

Stability transition curves in (G-w plane for a=1

26

Stability transition curves in -w plane for a=>5

3
—@=0 analytical
= (=90 analytical
2.5 - = = =0 numerical

= = =@=90 numerical

Stability transition curves in 8-w plane for a=100

3
—@=0 analytical
——#=90 analytical
2.5 - = =#=0 numerical

= = =@=90 numerical

1.5
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/hang and Jin experiments 27

» Experiments conducted by the research group of
Professor Zhang from the Chinese University of Hong Kong

» Swimmer fabricated out of
Ppy elastic tail embedded

; . . f
with paramagnetic paricles >peed vs f >peed vs frequency

\ Fe,0O, nanoparticles

Ppy

SEM image of the as-
prepared nanowires




Model fitting 28

The resultant parameters: t,,, = t;, = 0.1, no clear asymptofic limit!

Speed vs B Stability limits

Hz

e
=
o
=
o —
72|
=
<
=
+~

0=0°
stable

2Tw

0=90°
stable
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