
Analysis of stability transitions

in a microswimmer with 
superparamagnetic links
YUVAL HARDUF, YIZHAR OR

TECHNION, ISRAEL INSTITUTE OF TECHNOLOGY

1



Introduction
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Dreyfus (Nature 2005) – supplementary video 2
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Introduction

 Dreyfus (2005): Introduced a swimmer actuated 

by an external magnetic field of the form:
1

𝛽 sin 𝜔𝑡
𝐵𝑥

 Gauger and Stark (2006): Observed a change of 

swimming direction in numerical simulations for 
large 𝛽 and 𝑆𝑝 values

 Roper (2008): Observed a stability transition in 

experiments on “ineffective swimmers” for 𝛽 > 2

 Our goal: analyzing the swimmer using 

theoretical models
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Microswimmer modelling

 Low Reynolds number hydrodynamics

 No inertia – quasi-static motion

𝐹𝑖 = 0 ,𝑀𝑖 = 0

 3 physical mechanisms:

 Elasticity

Magnetic torque

Viscous drag
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Robotic microswimmer modelling –
magnetic forces

 Magnetic moment – relates the field to the torque:

𝑳 = 𝓜×𝑩

 Ferromagnetic materials – constant magnetic moment:

𝓜= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

 Paramagnetic materials – induced magnetic moment:

𝓜= 𝝌 ⋅ 𝑩
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Robotic microswimmer modelling –
calculating drag: RFT

 RFT – Resistive Force Theory:

 For slender link:

 For spherical head:
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Numerical analysis of
multilink model

 Spherical link with a tail that consists of a chain of slender, 

superparamagnetic links, connected by torsion springs.

 Hydrodynamic and magnetic interactions are neglected

 External magnetic field: 𝑩 =
1

𝛽 sin 𝜔𝑡
𝐵𝑥
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Comparison to experiments

Speed vs. frequency
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 Comparison between 

our numerical results 

and  the experimental 

results of Dreyfus et al.

 𝑆𝑝 =
𝐿

𝜅

𝑐𝑛𝜔

1
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Further investigation:
Bi-stability and optimal 𝛽
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Bistability

Optimal 𝜷



Analysis of a 2 link model

 We base our model on the (ferromagnetic) model introduced by 

Gutman and Or (2014), that did not exhibit stability transitions

 Two slender links, one paramagnetic, one non-magnetic, 
connected by a torsion spring

 Drag forces calculated using RFT (slender links)

 Torsion spring: 𝜏 = −𝑘𝜙

 External magnetic field: 𝑩 =
1

𝛽 sin 𝜔𝑡
𝐵𝑥

 The magnetic torque generated:
𝑳 = Δ𝜒𝑉 𝒕 × 𝑩 𝒕 ⋅ 𝑩 ~ sin 2𝛾

 (For ferromagnetic link 𝑳~ sin 𝛾 )
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Stability of a single magnetic link 
in a constant field

 Ferromagnetic link: 𝐿~ sin 𝛾

 2 equilibrium states

 Paramagnetic link: 𝐿~ sin 2𝛾

 4 equilibrium states
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𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 0

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 𝜋

𝐵 = 𝑐𝑜𝑛𝑠𝑡

𝐵 = 𝑐𝑜𝑛𝑠𝑡

𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = 0, 𝜋 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒, 𝛾 = ±
𝜋
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Analysis of a 2 link model –
Continued

 3 characteristic time scales:

𝑡𝜔 =
1

𝜔
= 𝑎𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛, 𝑡𝑚 =

𝑐𝑡𝑙
3

6Δ𝜒𝐵𝑥
2𝑣
=

𝑣𝑖𝑠𝑐𝑜𝑐𝑖𝑡𝑦

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐
, 𝑡𝑘 =

𝑐𝑡𝑙
3

12𝑘
=

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

 we also denote 𝛼 =
𝑡𝑚

𝑡𝑘
=

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

 Infinite domain dictates that the

dynamics are independent of 𝑥, 𝑦
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Fast actuation and soft swimmer –
Method of Multiple scales

 Taking the ratios 
𝑡𝜔

𝑡𝑚
,
𝑡𝜔

𝑡𝑘
≈ 𝑂 𝜖 ≪ 1

 Using the method of multiple scales

 Introducing fast and slow time scales: 𝑇0 =
𝑡

𝑡𝑚
, 𝑇1 = 𝜖𝑡

 Expanding the solutions 

𝒒 = 𝒒𝟎 𝑇0, 𝑇1 + 𝜖𝒒𝟏 𝑇0, 𝑇1 + 𝜖2𝒒𝟐 𝑇0, 𝑇1 +⋯ = 𝒒𝟎 + 𝚫𝒒

 Equating coefficients of 𝜖

 Requiring elimination of secular terms

 0th order is only slow dynamics:

𝜃0 = Θ0 𝑇1 , 𝜙0 = Φ0 𝑇1
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Fast actuation and soft swimmer–
continued

 Slow dynamics equations obtained from

eliminating secular terms

 Equilibrium points at Θ𝑒 = 0,
𝜋

2
, Φ𝑒 = 0
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Linearization about 𝚯𝒆 =
𝝅

𝟐
Linearization about 𝚯𝒆 = 𝟎

Unstable for 𝜷 < 𝟐Stable for 𝜷 < 𝟐

Stable for 𝜷 > 𝟐Unstable for 𝜷 > 𝟐

Corresponds to 𝑽𝒙 = 𝟎,𝑽𝒚 ≠ 𝟎 (not shown)Corresponds to 𝑽𝒙 ≠ 𝟎,𝑽𝒚 = 𝟎 (not shown)

Stability transition for 𝜷 → 𝟐, with no dependence on 𝝎 is confirmed

Optimal 𝜷 for velocity in period is also found (not shown) 

Bistability regions are not observed

Fast actuation and soft swimmer–
continued

 Slow dynamics equations obtained from

eliminating secular terms

 Equilibrium points at Θ𝑒 = 0,
𝜋

2
, Φ𝑒 = 0

 Linearization about both equilibrium points yields:
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1

 Substituting 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯
and equating coefficients of 𝜖
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔

𝑡𝑚
= 𝑂 𝜖 ≪ 1 ,

𝑡𝜔

𝑡𝑘
= 𝑂 1

 Substituting 𝜙 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯
and equating coefficients of 𝜖

 1st order approximation yields a set of

equations linear in 𝜙
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Fast actuation and stiff swimmer –
perturbation expansion

 Taking the ratios 
𝑡𝜔
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 periodic solution 𝜃𝑝(𝑡) oscillating about 𝜃𝑒 = 0,
𝜋

2

 Inclined Kapitza pendulum:
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Variational equation

Assuming a solution of the form
𝜃 𝑡 = 𝜃𝑝 𝑡 + 𝛿 𝑡

Substitute solution form into nonlinear equation

Expand the equation about 𝛿 = 0

A linear Hill equation in 𝛿 is obtained:
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Approximation of 𝜃𝑝

 Linearizing the 2nd order ODE in 𝜃 about 𝜃𝑒 = 0,
𝜋

2

yields a Hill equation of the form

 Using harmonic balance, an approximation of 

the periodic solution is obtained:

 ෨𝜃 ≈ ෨𝜃𝐾 = σ𝑘=1
𝐾 𝑎𝑘 cos 𝑘𝜔𝑡 + 𝑏𝑘 sin 𝑘𝜔𝑡

 𝜃𝑝 𝑡 ≈ 𝜃𝑒 + ෨𝜃𝐾 𝑡
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Hill’s determinant method

 Expanding the coefficients of 𝛿, ሶ𝛿 into a Fourier series

yields a Hill equation

ሷ𝛿 + 𝑝1 𝑡 ሶ𝛿 + 𝑝2 𝑡 𝛿 = 0, where 𝑝1, 𝑝2 periodic, with period 𝑇 = 𝜋/𝜔

 Solutions corresponding to stability transitions

have a period of 
2𝜋

𝜔
(Floquet theory)

 Substituting 𝛿 = 𝑀0 + σ𝑘=1
𝐾 𝑀𝑘 cos 𝑛𝜔𝑡 + 𝑁𝑘 sin 𝑛𝜔𝑡

 Equating coefficients of each harmonic

 Obtaining a homogenous, algebraic system 𝑯𝒙 = 0

 We require that det 𝐻 = 0

 The solutions of 𝐝𝐞𝐭 𝑯 = 𝟎 are the stability transition curves
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Zhang and Jin experiments

 Experiments conducted by the research group of

Professor Zhang from the Chinese University of Hong Kong

 Swimmer fabricated out of 

Ppy elastic tail embedded 

with paramagnetic paricles

27

SEM image of the as-

prepared nanowires

Fe3O4 nanoparticles

Ppy

Speed vs frequencySpeed vs 𝛽



Model fitting 28

Speed vs 𝛽 Stability limits

The resultant parameters: 𝑡𝑚 = 𝑡𝑘 = 0.1, no clear asymptotic limit!



Thank you! Questions?
Contact me: Yuval.Harduf@technion.ac.il
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