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Motivation

2

Time-optimal control problems arise in robotics, aerospace, and systems 
engineering, where reaching a target state quickly is critical.

For linear systems with scalar input, the optimal control is known to be bang-bang, 
switching between extreme values.

For systems where all eigenvalues are real, the number of switches is bounded by the 
system dimension.

We study the case where the system has a purely imaginary spectrum, and prove 
that the number of switches must grow linearly with the time horizon.

We relate for the first time the analysis of time optimal control to mean motion 
problem.



Time Optimal Control
Consider the single-input linear control system

ሶ𝑥 = 𝐴𝑥 + 𝑏𝑢,

with 𝑥: 0, ∞ → ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝑏 ∈ ℝ𝑛 and 𝑢: 0, ∞ → [−1,1].

Optimal Problem: Fix arbitrary 𝑞, 𝑝 ∈ ℝ𝑛, and consider the problem of finding a 
measurable control 𝑢, taking values in [−1,1] for all 𝑡 ≥ 0, that steers the system from 
𝑥 0 = 𝑝 to 𝑥 𝑇 = 𝑞 in minimal time 𝑇.
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Time Optimal Control – Cont.
It is well known that if (𝐴, 𝑏) is controllable, such a control 𝑢∗ exists and satisfies

𝑢∗ 𝑡 = sgn 𝑚 𝑡 ,

where the switching function 𝑚: 0, 𝑇 → ℝ is given by:

𝑚 𝑡 = 𝑝⊤ 𝑡 𝑏,

where the “adjoint state vector” 𝑝: 0, 𝑇 → ℝ𝑛\{0} of the Pontryagin maximum principle 
satisfies:

ሶ𝑝 𝑡 = −𝐴⊤𝑝 𝑡 .
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Time Optimal Control – Cont.
Typically the value of the adjoint state vector is not known explicitly, so it is natural to study an 
“abstract” switching function:

𝑚 𝑡; 𝑝, 𝑏, 𝐴 = 𝑝⊤𝑒−𝐴𝑡𝑏.

The optimal control satisfies

The optimal control is called “bang-bang”. The switching points are times 𝑡𝑖 such that 𝑚 𝑡𝑖 = 0. 

Our goal is to determine the number of switching points in the time interval [0, 𝑇], denoted 𝑁 𝑇 .
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Main Result
We consider the case where all eigenvalues of 𝐴 are purely imaginary.

We develop a new approach for analyzing the zeros of 𝑚(𝑡) using the classical problem of mean 
motion that was solved by Hermann Weyl in 1938. using this new approach, we showed that on 
the interval 0, 𝑇 ,

𝑁 𝑇 ≥ 𝑐𝑇 for sufficiently large 𝑇,

where 𝑐 is a positive constant. Our approach also provides a closed-form expression for 𝑐 in 
terms of Bessel functions.
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Mean Motion 
We first discuss the mean motion problem and then relate the problem to 
time-optimal control.

Consider the complex function 𝑧: 0, ∞ → ℂ defined by

𝑧 𝑡 ≔ σ𝑘=1
𝑛 𝑎𝑘𝑒𝑖 𝜆𝑘𝑡+𝜇𝑘 ,

where 𝑎𝑘 ∈ ℂ, 𝜆𝑘 , 𝜇𝑘 ∈ ℝ. Note that this can be interpreted as a weighted 
sum of linear oscillators with different frequencies and different phases, or 
orbits around central bodies. 
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Mean Motion – Cont.
Assume that 𝑧 𝑡 ≠ 0 for all 𝑡 ≥ 0. Then arg 𝑧 𝑡 = arg σ𝑘=1

𝑛 𝑎𝑘𝑒𝑖 𝜆𝑘𝑡+𝜇𝑘  is a continuous 
function.

The mean motion problem: Determine whether the asymptotic angular velocity of 𝑧(𝑡),

Ω ≔ lim
𝑡→∞

arg 𝑧 𝑡

𝑡
,

exists, and if so, find its value.

This problem goes back to Lagrange who studied the average angular speed of orbiting bodies.
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Solution of the Mean Motion Problem
Hermann Weyl proved that

Ω = σ𝑘=1
𝑛 𝜆𝑘𝑉𝑘 ,

where 𝜆𝑘 is the frequency of oscillator 𝑘 and 𝑉𝑘 ≥ 0 with σ𝑘=1
𝑛 𝑉𝑘 = 1 .
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Let 𝜙𝑘 , 𝑘 = 1, … , 𝑛, be angular coordinates. Fix 𝑛 complex numbers 𝑎1, … , 𝑎𝑛 ∈ ℂ. Associate 
with every set 𝜙1, … , 𝜙𝑛  a complex number

𝑧 𝜙1, … , 𝜙𝑛 : = 

𝑘=1

𝑛

𝑎𝑘𝑒𝑖𝜙𝑘 .

Geometrically, this can be interpreted as the position of the end-point of a multi-link robot arm 
where the 𝑘th link has length 𝑎𝑘 , and the angle between link 𝑘 and link 𝑘 + 1 is 𝜙𝑘.

To explain this result, we first consider the “static” problem.



Example: For 𝑛 = 2 we have:

𝑧 𝜙1, 𝜙2 = 𝑎1𝑒𝑖𝜙1 + 𝑎2𝑒𝑖𝜙2 .
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Solution of the Mean Motion Problem
For 𝑟 ≥ 0. Let 𝑊𝑛 𝑟 = 𝑊𝑛(𝑟; 𝑎1, … , 𝑎𝑛) denote the probability that 𝑧 = σ𝑘=1

𝑛 𝑎𝑘𝑒𝑖𝜙𝑘 ≤ 𝑟. 
Clearly

𝑊𝑛 𝑟 =
1

2𝜋 𝑛 𝑧 ≤𝑟
𝑑𝜙1 … 𝑑𝜙𝑛 ,

the volume of all the angles yielding 𝑧 ≤ 𝑟.
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Solution of the Mean Motion Problem
Hermann Weyl proved that the mean motion Ω exists, and satisfies

Ω = 

𝑘=1

𝑛

𝜆𝑘𝑉𝑘 ,

where 𝑉𝑘 ≔ 𝑊𝑛−1(𝑎𝑘; 𝑎1, … , 𝑎𝑘−1, 𝑎𝑘+1, … , 𝑎𝑛). Furthermore, the 𝑉𝑘s are non-
negative, and satisfy σ𝑘=1

𝑛 𝑉𝑘 = 1 .
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Solution of the Mean Motion Problem
Example: Consider the case 𝑛 = 2, that is,

𝑧 𝑡 = 𝑎1𝑒𝑖(𝜆1𝑡+𝜇1) + 𝑎2𝑒𝑖(𝜆2𝑡+𝜇2),  𝑎1 > |𝑎2|.

In this case 𝑎2𝑒𝑖(𝜆2𝑡+𝜇2) is a “small perturbation” added to 𝑎1𝑒𝑖(𝜆1𝑡+𝜇1).

The solution of the mean motion problem gives 

Ω = 𝜆1𝑉1 + 𝜆2𝑉2,

where 𝑉1 is the probability that 𝑎2𝑒𝑖𝜙 ≤ 𝑎1, that is, 𝑉1 = 1. Since 𝑉1 + 𝑉2 = 1, 𝑉2 = 0. 

Thus, in this case

Ω = 𝜆1𝑉1 + 𝜆2𝑉2

         = 𝜆1 ⋅ 1 + 𝜆2 ⋅ 0 = 𝜆1.
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So Far…
𝑧 𝑡 ≔ σ𝑘=1

𝑛 𝑎𝑘𝑒𝑖 𝜆𝑘𝑡+𝜇𝑘 .
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Ω = σ𝑘=1
𝑛 𝜆𝑘𝑉𝑘 , 𝑉𝑘 ≥ 0. Ω as a function of Bessel functions.
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The Bohl-Weyl-Wintner Formula
The Bohl-Weyl-Wintner Formula asserts that

 𝑊𝑛 𝑟; 𝑎1, … , 𝑎𝑛 = 𝑟 0

∞
𝐽1(𝑟𝜌) ς𝑘=1

𝑛 𝐽0 𝑎𝑘 𝜌 𝑑𝜌 ,

where 𝐽0, 𝐽1 are Bessel functions.

Using the Bohl-Weyl-Wintner formula for 𝑊𝑛−1 gives

Ω = σ𝑘=1
𝑛 𝜆𝑘𝑎𝑘 0

∞
𝐽1(𝑎𝑘𝜌) ς𝑘=1

𝑛−1 𝐽0 𝑎𝑘 𝜌 𝑑𝜌 .

Implying that Ω can be computed numerically.
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Example of the Mean Motion Problem
Example: Consider

𝑧 𝑡 = 𝑒𝑖 2𝑡 + 2.5𝑒𝑖3𝑡 + 3𝑒𝑖 3𝑡.

Then
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A numerical integration gives Ω = 2.0614. Plotting 
arg 𝑧 𝑡

𝑇
 as a function of 𝑇 we have
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Relating the Number of Switches and the 
Mean Motion Problem

Optimal Control Problem: steering the system from 𝑥 0 = 𝑝 to 𝑥 𝑇 = 𝑞 in minimal time 𝑇.

Solution: We have a switching function: 𝑚 𝑡; 𝑝, 𝑏, 𝐴 = 𝑝⊤𝑒−𝐴𝑡𝑏. The optimal Control is 

Mean Motion Problem: For 𝑧 𝑡 ≔ σ𝑘=1
𝑛 𝑎𝑘𝑒𝑖 𝜆𝑘𝑡+𝜇𝑘  we compute Ω ≔ lim

𝑡→∞

arg 𝑧 𝑡

𝑡
.

Solution: Ω = σ𝑘=1
𝑛 𝜆𝑘𝑉𝑘 , where 𝑉𝑘 are given in terms of Bessel Functions.

Our goal is to relate these problems under the assumption that 𝜎 𝐴 ⊆ 𝑖ℝ.

19



Relating Switching Function to Mean 
Motion Problem

The dimension of 𝐴 is even, and the eigenvalues of 𝐴 ∈ ℝ𝑛×𝑛 are,

𝑖𝜆1, −𝑖𝜆1, … , 𝑖𝜆𝑛

2
, −𝑖𝜆𝑛

2
,  𝜆𝑖 ∈ ℝ.

We can re-write the switching function:

𝑚 𝑡; 𝑝, 𝑏, 𝐴 = 𝑝⊤𝑒−𝐴𝑡𝑏 = Re σ
𝑘=1

𝑛

2 𝑎𝑘𝑒𝑖𝜆𝑘𝑡 ,

where 𝑎𝑘 ∈ ℂ depend on the entries of 𝑏, 𝑝 and eigenvalues 𝜆𝑘.

This is the real part of the function that appears in the mean motion problem.

We represent the switching function 𝒎 as a sum of oscillators.
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Example
Consider 𝐴 =

0 𝜉
−𝜉 0

, 𝜉 > 0 , 𝑏 =
1
0

. It is easy to confirm that (𝐴, 𝑏) is controllable. The 

eigenvalues of 𝐴 are ±𝑖𝜉. Let 𝑝 =
𝑝1

𝑝2
. Then

where 𝑎1 = −𝑝1𝑒−
𝑖𝜋

2 + 𝑝2.
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Main Result and Proof
Theorem: Suppose that 𝜎 𝐴 ⊆ 𝑖ℝ and that the pair (𝐴, 𝑏) is controllable. Then for 
generic vector 𝑝 ∈ ℝ \{0}, there exists 𝑐 > 0 such that for any 𝑇 large enough the 
number of zeros of the switching function 𝑚 on the interval [0, 𝑇] satisfies

𝑁 𝑇 ≥ 𝑐𝑇 + 𝑜 𝑇

Proof: We showed that 𝑚 𝑡 = Re σ
𝑘=1

𝑛

2 𝑎𝑘𝑒𝑖𝜆𝑘𝑡 . Defining 𝑧 𝑡 = σ
𝑘=1

𝑛

2 𝑎𝑘𝑒𝑖𝜆𝑘𝑡, every 
time 𝑡𝑖 ≥ 0 such that arg 𝑧 𝑡𝑖 = 𝜋/2 or arg 𝑧 𝑡𝑖 = 3𝜋/2 is a zero of the switching 
function 𝑚 𝑡 .
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Proof of Main Result
For 𝑇 large enough the frequency of 𝑧(𝑡) is Ω. This implies that 𝑧(𝑡) completes a period every 

|Ω|

2𝜋
 

units of time. For each period 𝑚 𝑡 = 0 twice, so the number of zeros of 𝑚 at time 𝑇 is:

|Ω|

𝜋
𝑇 + 𝑜 𝑇 ,

Since a zero of 𝑚 corresponds to a switch, we have

𝑁 𝑇 ≥
|Ω|

𝜋
𝑇 + 𝑜 𝑇 .

That is, 𝑁 𝑇 ≥ 𝑐𝑇 + 𝑜(𝑇), where 

𝑐 =
| σ𝑘=1

𝑛 𝜆𝑘𝑎𝑘 0
∞

𝐽1 𝑎𝑘𝜌 ς𝑘=1
𝑛−1 𝐽0 𝑎𝑘 𝜌 𝑑𝜌|

𝜋
.
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Conclusions & Future Research
1) We studies 𝑁(𝑇) when 𝜎 𝐴 ⊆ 𝑖ℝ.

2) We related this problem, for the first time, to the classical mean motion problem.

3) Using this we gave a lower bound on 𝑁 𝑇 .

Future Research

It is known that if 𝜎 𝐴 ⊆ ℝ, then

𝑁 𝑇 ≤ 𝑛 − 1 for all 𝑇 > 0.

An interesting research direction is to study the case when 𝜎 𝐴 ⊆ ℂ. 
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𝑇ℎ𝑎𝑛𝑘 𝑦𝑜𝑢
Questions?
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