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Flow Stability ¥,

* Stability analysis 1s used in the context of fluid dynamics to assess at what conditions a laminar
flow becomes turbulent

Turbulent
region

* Laminar flow - smooth orderly flow that moves in
parallel layers (laminae) with no unsteady
macroscopic mixing or overturning motion of the
layers.

Bufferlayer

Viscous
sublayer

* Turbulent flow - irregular disorderly flow with
unsteady, chaotic three-dimensional macroscopic
mixing motions.

* Flow instability may be triggered by disturbance,
and transition from laminar to turbulent flow
state may occur.

* Key parameter in studying flow stability 1s the
Reynolds number (Re) - dimensionless quantity , \
; ; . : . 3 > 4.2 Image source:
measuring the ratio between inertial and viscous 04

4 www.1ag.uni-stuttgart.de/en/working-
force S groups/transition-and-turbulence 2
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Background

* Two main approaches are used in transition studies:
— Modal analysis — e.g., hydrodynamic linear stability theory (LST)

* Eigenvalue analysis of the flow response to initial conditions
* Infinitesimal disturbances superimposed on a base flow
* Defined in the infinite horizon sense, while short-time perturbation dynamics are disregarded (Schmid 2007).

— Nonmodal analysis — e.g., transient growth, input-output analysis

* Allows detailed analysis of the response to * Allows studying flow behavior in the finite
external forcing (e.g., input-output horizon sense (e.g., transient growth due to
formulation that contains a transfer function) the non-normality of the LNS operator)

(a) 150 . . . .

‘o

100 £E

50

<G:nax(t()’ T)>

0 ():2 l().‘4 0.‘6 0.‘8 1.0
Tu /h 3
Reprinted from Fig. 10.6, Jovanovic, Thesis, 2004 Reprinted from Fig. 11(a), A. Lozano-Duran et al., JFM, 2020

l
i



Motivation — Critical Reynolds Number &éo

Turbulent spot in plane Couette flow

* LST predicts Couette flow to be stable at &= for Re = 405

all Reynolds numbers

— Experiments (Tillmark & Alfredsson 1992;
Dauchot & Daviaud 1995) and simulation
results (Dou & Khoo 2012; Barkley &

Tuckerman 2005) sShow transition at
Re = 320 — 370

Turbulent spot surrounded by laminar
flow in plane Poiseuille flow for Re
= 842

* LST predicts transition of Poiseuille
flow at Re = 5772

— Experimental results (Sano & Tamai 2016)
show transition at Reynolds numbers
as low as Re = 842
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Motivation — Effect of Perturbation Magnitude &”

* Experiments also show that flow can remain stable for larger Reynolds
number than the critical value predicted by LST (up to Re = 100,000 for
pipe flow) by reducing disturbance magnitude (Pfenniger 1961; Avila et al. 2023)

Disturbance magnitude has an impact on the stability of flows.
This motivates us to focus on developing a stability criterion that
accounts for finite disturbance magnitude.




Outline

* Mathematical Background
— Navier-Stokes equations for perturbations
— Input-output analysis
— Small gain theorem utilization for flow stability analysis

* Unstructured Nonlinearity
— Stability analysis for 2D modes

* Structured Nonlinearity
— Modeling nonlinearity structure using SSVs
— Stability analysis for 2D modes
— Stability analysis for 3D modes
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Linear Input-Output Analysis

* Linearized Navier-Stokes equation for perturbations:
1
o,u = —U-Vu—u-VU—Vp+R—eV2u+f

Farrell & loannou (93 PF); Bamieh & Dahleh (01 PF); Fourier transform in X, z

Jovanovi¢ & Bamieh (01 ACC,05 JFM); Bagheri et al. (09 JFM); directions and in time;
McKeon & Sharma (10 JFM); Hariharan et al. (18 JNNFM); (x,z,t) = (ky, k,, w)
. u
W = Ap + Bf v
,Where Y =1, |, =|V ,
¢((1), kx' Y, kz) — Cl/) y w ’
------ ’

* Input — forcing
* Output — velocity perturbations vector

* Frequency response operator:
H(Y; ky, kzy 0) = C(iwl — A)™'B




Structured Input-Output Analysis formulation \{4%’

* Navier-Stokes equation for perturbations (no forcing):

1
oou=—-U-Vu—u-VU— Vp+R—eV2u u - Vu

* Use nonlinear term (u - Vu) as a feedback forcing term (Liu and Gayme, 2021)
* Uz - matrix gain that results in the structure of the nonlinear term

Input Inp}lt
Vu (forcing) ﬁ v Hy(y; k k, w) (forcmg)

_E} Output (u)( LNS system Ji ALEhag(V v Vﬂ Output (u) ( Ky ko k. w)]li
L | ) [ }

* We combine the gradient operator with H to obtain operator Hy
(forcing—velocity perturbation derivatives)



Choice of Norms

* Amplification of kinetic energy density:

1 (00)
”}[”%(kXI kZ) — E’[ trace[}[(y; kx; kZi w)}[*(y; kx; kZi a))]d(l)

* Amplification of most amplified velocity eigenvector:
|H || oo (ky, kz) = sup 5[}[()7; ky, ky, w)],

w€eER
o - largest singular value

* || - || represents the “worst case” amplification and is thus
suited for formulating a stability criterion
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Stability Analysis via Small Gain Theorem

&

* We use the small gain theorem to derive a stability criterion for shear flows that

accounts for finite disturbance magnitude

un €1

é
[1]

_I_
| -
(forcing)

4[}[V (}’; kx' kzr (1))]‘7

M

€2

=k

_I_

+ w2
O

Reprinted from Robust and optimal control, Zhou et al.,1995.

Theorem 9.1 (Small Gain Theorem) Suppose M € RH.. Then the intercon-

nected system shown in Figure 9.3 is well-posed and internally stable for all A(s) €
RH~ with

(a) Al <1/v if and only if

JI(S)”X < 7
(b) Al < 1/vif and only if [[M(s)] <7
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Stability Analysis via Small Gain Theorem

e |n our case:

luz|| = sup[a(uz)] = supl|lu(y)|l, © maximal disturbance, 1,44

YEY YEY

Where Y = |[—1,1] for channel flows and Y = [0, o) for boundary layers

* Requirement for stability utilizing the small gain theorem:

supllu()ll, < 1/y © [|Hyllo < v
YEY
[}

supllu@)ll, < [1Hylls"
YEY

* Bound on velocity perturbation magnitude
that ensures stability of the system:

Umax < ||}[V”o_ol

&

:
| [1] |

Input
(forcing)

A[ﬂV(yJ kx; kZ) (1))]‘7
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Stability for 2D modes

~
V=2
t\/ ok

log;,(max ||u||) Isocontours

Couette base flow 0.5
Only 2D modes are considered (k, = 0)

Stability for selected perturbations of :
amplitude ||u]|, = 10744

Re_ ., = 320 matches experimental

results (Tillmark & Alfredsson 1992; Dauchot &
Daviaud 1995)

This analysis can be extended to any

perturbation magnitude
U = /,= 1 200 ' 400 600 800
e y; yr SMG Re
v ‘ Re3M¢ =320

7 /
R u




Stability for 2D modes (k, = 0) 'g%’

[ ]
Couette flow P01seullle flow Blasius flow
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Given large enough perturbation

magnitude — the flow can become

For infinitesimally small disturbance (||u||,) — results approach LST
unstable

As perturbation size increases — the critical Reynolds number decreases

As the Reynolds number increases —
smaller perturbations cause instability

Uiy = y=1 Uly)=1-y* y=1
Y v y-_—y I 5\
z/—)-m Z 2/—)-:1: q
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Structured Input-Output Analysis

* Response 1s quantified by computing structured singular values (SSVs)
of f]‘[v (Packard & Doyle 1993)

* SSVs - obtained by solving the minimization problem:

1
pa,(Hy) = ———= : — : .
min{(u=) : det(/ — Hyu=) =0, u=€ A,} u=— Interconnected uncertainty
|Hyll,, = sup [,uAu (?—[V)] A ,— The structure of the
" weR

interconnected uncertainty

Ha, (-) — the largest SSV with
respect to a structure 4,

E]
[x]

Input o (-) — largest singular value
(forcing)

det(-) — determinant operation
}[V (y' kx, kz: (1)) .




Structure of Uncertainty

'V'—”J
Vs

A, ={uz =133 ®A,LA, = [diag(ug),diag(vg), diag(wsz)]: Ug, Vg, Wg € (CNyXl}

A, - uncertainty structure that matches the structure of ux=

U= - diagonal block matrix with repeating blocks, where
the blocks have 3 diagonals

Computing SSVs under A, requires complex set of
constraints to preserve the structure of ux

Such a solution has not yet been found

15



Approximating the structure of A,

* Repeated full — block matrix (Mushtaq, et al., 2024)

A, = {13><3 QR A A € (CSNyXNy}

e Full — block matrix with different blocks (Liu and Gayme,

2021)

A, = {diag(Ay, Ay, Ag): A, € C3NNy i e (1,2,31)

&
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Structured Stability Analysis \;Z%’

* Our stability criterion based on the small gain theorem can be updated to account for
the structure of the nonlinear term

e Structured analysis:

— Accurate Umax = ||3"[v||ﬁA1u (ky, k)
structure:

— Approximated Uax < ||7-[V||;A1T (k,, k,)
structures:

9 [ ]
umax S ”}[V”H'Anr (kx; kz) Apyr -

e Unstructured analysis:

Umax < 1Hylle! ey, k2)

17



Structure Effect on Stability

Blasius flow, (Re —

Unstructured:

- Blasius Neutral Cu
===+ Reeri

Neutral curve

Unstable for any
perturbation size

i : : : - Mg
1000 2000 3000 4000 5000

Re

Outside the neutral curve region, similar

k,) maps for k, =

Non repeated

= Blasi
= Re,

1000 2000 3000 4000
Re

behavior between structured and
unstructured cases

Imposing structure shows that the least
stable region is confined to a neutral curve

envelope.
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Blasius flow, (k, — k,) maps for Re = 400:
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Streaky structures

* The spatial shape of the least stable mode depends on the
structure of the nonlinearity

* For the case of repeated blocks —a wide range of dommant
unstable modes is possible.

QNN

Oblique waves
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Conclusions

*  We derived a stability criterion to analyze shear flows and boundary layers based on disturbance
magnitude, utilizing the small gain theorem.

— Converges to LST predictions of critical Reynolds number for infinitesimal disturbances
— Expands on linear stability theory (LST) by allowing for finite-amplitude perturbations

* Predicts instability of Couette flow as observed in experiments in contrast to LST predictions

* Shows that flow can become unstable for a wide range of Reynolds numbers, depending on the
magnitude of perturbations present in the flow

* Can be modified to include constraints on the structure of the nonlinearity using structured singular
values

* Streaky structures, which are shown to be dominant in unstructured I/O approach, lose their
dominance when using structured I/0O approaches.

* Qur approach allows to analyze flow stability in noisy environments, such as in real-life applications
and wind tunnel experiments, and explore bypass transition scenarios. .
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Linear State-Space
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H Operator Components

&

%,
H(ky, sy w) = [4 (iwl — o (ky k)t [B. B, B.]=
(éﬂw

Hog(kzs by w)  Hoy (ke ksyw)  F (e Ky, w)
%I(RTI] Irl-{;:2"! ILL}) %y(k‘m kz; ILL}) %Z(RTI] ;;JZ'! wj

{cﬁr(kz;kz;%}) Lﬁy(kquz-;w) ‘;‘i{:iz(kl:km“‘})]

H (ksy by w) = €liw] — o (ke k.)) " (B B, B.| =

= [Hohe hayw) T (kg hayw) (kg by )]

T (ks k., w) = 5’1 (iwl — o (ky, k) 1B =
Cu

) (key, Kos )

EALS k:z,w)]



Eigenvalues L\ e

Poiseuille flow Blasius flow
017 0r
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Navier-Stokes equations for perturbations

1
oeu=-U-Vu—u-VU-Vp+—V?u—u-Vu + f
Re Nonlien
onliear

term

f — Forcing term (input)

u = [u, v, w]! — Velocity perturbation vector (output)

U — Base flow (laminar solution)

p — Pressure perturbation

The nonlinear term can be rewritten as follows:

0, U

dyu

d,u

u@xu+vayu+wazu Lurvw000000O0 0, v

u-Vvu = u@xv+v6yv+wazv =[000uvw000] ayv
ud,w + vi,w + wa,w 000000uvwl|d,v

ug d,,w

d,w

0, W 25



Structure of Uz
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uvw000000O
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Approximating the structure of A,

T )
* Repeated full — block matrix (Mushtaq, et al., 2024)
Ar — {13><3 ® Ar: Ar € (CBNyXNy} Ar
\ ~/
* Full — block matrix with different blocks (Liu and [ [ ] A
Gayme, 2021) A
A, = {diag(A,, Ay, Az): A; € C3NNy i € {1,2,31) nr
\-

* These imply the following relations between the sets:
A, CA, c A, cCNy*Ny

Solving the SSV minimization problem yields the following
behavior:

13l g, (s 2) = 113y lly, (e k2) 2 1Folly, Cexs bez) = 1H IS (e, k)

27



Optimization-Based Approach to Computing Amplification

N, X3N
A, CcA.Cc A, cCY*N

min o(us) < min o(uz) < mino(uz) < min g(uz
uEE(CNyXBNy ( H) Uz EAny ( H) uz €A, ( H) uz €Ay ( H)

28
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log || Hv |4, Repeated

N

~£J

Results — Range of Reynolds Numbers (Blas1us) \ S

% 3 DLR (Dominant low
Ts " } 5 Reynolds)
: ik -
% 4 254— TS (Tollmien-
“ = Schlichting)
<3 =
% SPS (Spanwise
<21 2| periodic streaks)
200 400 600 800 10\ //oo 400 600 800 1000 200 400 600 800 10
Re Re Re
Change of dominant mode |Hy || = 0

* Linear analysis predicts explosive growth at Re — 520

U(y) * Nonlinear mechanisms cause a decay of the
amplification of the TS mode - distributing energy
— x  between oblique modes
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log ||Hv||,, Repeated

N
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Results — Range of Reynolds Numbers (P01seu111e)
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FMLAB

Re = 5772

DLR (Dominant low
Reynolds)
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Schlichting)

%

SPS (Spanwise
periodic streaks)

|
|
|
|
|
|
|
|
|
|
1b
|
|
|
b
|
|

5
5400 5600 5800 6000 4200
L I L

'
4400 4600
I

0

2000 4000 6000 8000 1000

Re

[Hyllo = 00

* Similar trends to Blasius case (at appropriate Re)

All results comply with the hierarchical behavior:

17l Ve k) < 1176

I,

(kx; kZ) < “}[V

”ﬂATLT

(er kz) < ”}[V”oo(kx; kz)
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Stability for 3D modes &Q

e (Couette base flow

 Stability for perturbations of

amplitude 1073

* 3D modes have both k, and k,
components

B log (|| Hv||~ ) =-2.3 Isosurface
logo(||Hv||l) =-3.2 Isosurface

)
)
logo(|[Hv||d) =-3.7 Tsosurface
1) =-4 Isosurface

)

)

)

(

(

(

logyo(||Hv ||

log o (|[Hv]||~ ) =-4.3 Isosurface
(
(

log(|[Helloc

mlog (| [Hyll

1
—-4.6 Isosurface
=-5.2 Isosurface

Uy) = v=1
y Uy

>
o
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Stability for 3D modes

e Blasius base flow

£ AE@ORAR

&

Isosurface
5 Isosurface
8 Isosurface

I log o (|[Hvl|5)) =-3
-3.
-3.
-4.1 Isosurface
-4,
-5
-5.

(
logo(|[Hv||)
logyo (| Hvllx)
logyo(|[Hvlls)
logo(||Hv]l5) 5 Isosurface
( ) Isosurface
( )

5 Isosurface

log o (|| vl
[logy, ||7'1v||;1
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Generalized Power Iteration

&

Algorithm 3 Lower Bound: Generalized Power Iteration

1: (Initialization) Choose the number of iterations k, and set k = 0. Select some unit-norm vectors 5%, w!® € C™ and

2:
3:
4:

7:
8:
0:

a% = zI0 =0 e C™.
while k < k,, do
(19a): p := | MBH], and a*+1) := MBIk /p.
(19b): z; :=Q(L,, (@ L, (w!HH)
Lml(w[k]) and zIK+1 = L;f(z;u)
(19¢): B := || MUz, and w1 = MHZI+ /B,
(19d): by := Q (L, w*+)L,, (ak+H)
L, (@) and p*1 = L4(b)).
Setk =k + 1.
end while
Use alknl ptknl 1lknl and p to compute u, y and A.

Reprinted from Mushtaq, Bhattacharjee, Seiler, and Hemati, 2022.
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