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FMLABFlow Stability

• Stability analysis is used in the context of fluid dynamics to assess at what conditions a laminar 

flow becomes turbulent
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• Laminar flow - smooth orderly flow that moves in 

parallel layers (laminae) with no unsteady 

macroscopic mixing or overturning motion of the 

layers.

• Turbulent flow -  irregular disorderly flow with 

unsteady, chaotic three-dimensional macroscopic 

mixing motions.

• Flow instability may be triggered by disturbance,  

and transition from laminar to turbulent flow 

state may occur.

• Key parameter in studying flow stability is the 

Reynolds number (𝑅𝑒) - dimensionless quantity 

measuring the ratio between inertial and viscous 

forces.

Image source:su2code.github.io

Image source: 

www.iag.uni-stuttgart.de/en/working-

groups/transition-and-turbulence



FMLABBackground

• Two main approaches are used in transition studies:

– Modal analysis – e.g., hydrodynamic linear stability theory (LST)

• Eigenvalue analysis of the flow response to initial conditions 

• Infinitesimal disturbances superimposed on a base flow

• Defined in the infinite horizon sense, while short-time perturbation dynamics are disregarded (Schmid 2007).

– Nonmodal analysis – e.g., transient growth, input-output analysis
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Reprinted from Fig. 10.6, Jovanovic, Thesis, 2004 Reprinted from Fig. 11(a), A. Lozano-Durán et al., JFM, 2020

• Allows detailed analysis of the response to 

external forcing (e.g., input-output 

formulation that contains a transfer function)

• Allows studying flow behavior in the finite 

horizon sense (e.g., transient growth due to 

the non-normality of the LNS operator)



FMLABMotivation – Critical Reynolds Number

• LST predicts Couette flow to be stable at 

all Reynolds numbers

– Experiments (Tillmark & Alfredsson 1992; 

Dauchot & Daviaud 1995) and simulation 

results (Dou & Khoo 2012; Barkley & 

Tuckerman 2005) show transition at 

𝑅𝑒 = 320 − 370

• LST predicts transition of Poiseuille 

flow at 𝑅𝑒 = 5772 

– Experimental results (Sano & Tamai 2016) 

show transition at Reynolds numbers 

as low as 𝑅𝑒 = 842
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Reprinted from Fig. 6, Tillmark & 

Alfredsson, Eur. J. Mech 1992

Turbulent spot in plane Couette flow 

for 𝑅𝑒 =  405

Reprinted from Fig. 1, Sano & 

Tamai, Nature physics, 2016

Turbulent spot surrounded by laminar 

flow in plane Poiseuille flow for 𝑅𝑒 
= 842



FMLABMotivation – Effect of Perturbation Magnitude

• Experiments also show that flow can remain stable for larger Reynolds 

number than the critical value predicted by LST (up to 𝑅𝑒 = 100,000 for 

pipe flow) by reducing disturbance magnitude (Pfenniger 1961; Avila et al. 2023)
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Disturbance magnitude has an impact on the stability of flows. 

This motivates us to focus on developing a stability criterion that 

accounts for finite disturbance magnitude.



FMLABOutline

• Mathematical Background

– Navier-Stokes equations for perturbations

– Input-output analysis

– Small gain theorem utilization for flow stability analysis

• Unstructured Nonlinearity

– Stability analysis for 2D modes

• Structured Nonlinearity

– Modeling nonlinearity structure using SSVs

– Stability analysis for 2D modes

– Stability analysis for 3D modes

6



FMLABLinear Input-Output Analysis
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• Linearized Navier-Stokes equation for perturbations: 

𝜕𝑡𝒖 = −𝑈 ⋅ ∇𝒖 − 𝒖 ⋅ ∇U − ∇𝑝 +
1

𝑅𝑒
∇2𝒖 + 𝒇

• Input – forcing 

• Output – velocity perturbations vector

• Frequency response operator: 

 ℋ 𝑦; 𝑘𝑥 , 𝑘𝑧, 𝜔 = 𝐶 𝑖𝜔𝐼 − 𝐴 −1𝐵

ሶ𝜓 = 𝐴𝜓 + 𝐵𝑓
𝜙(𝜔, 𝑘𝑥 , 𝑦, 𝑘𝑧) = 𝐶𝜓 

, where 𝜓 =
𝑣

𝜔𝑦
, 𝜙 =

𝑢
𝑣
𝑤

Fourier transform in x, z 

directions and in time;

𝑥, 𝑧, 𝑡 → (𝑘𝑥, 𝑘𝑧 , 𝜔)

Farrell & Ioannou (93 PF); Bamieh & Dahleh (01 PF); 

Jovanović & Bamieh (01 ACC,05 JFM); Bagheri et al. (09 JFM); 

McKeon & Sharma (10 JFM); Hariharan et al. (18 JNNFM); 



FMLABStructured Input-Output Analysis formulation
• Navier-Stokes equation for perturbations (no forcing):

𝜕𝑡𝒖 = −𝑈 ⋅ ∇𝒖 − 𝒖 ⋅ ∇U − ∇𝑝 +
1

𝑅𝑒
∇2𝒖 − 𝒖 ⋅ ∇𝒖

• Use nonlinear term (𝒖 ⋅ ∇𝒖) as a feedback forcing term (Liu and Gayme, 2021)

• 𝐮Ξ - matrix gain that results in the structure of the nonlinear term

• We combine the gradient operator with ℋ to obtain operator ℋ∇                  

(forcing→velocity perturbation derivatives)
8

LNS system
Output (𝒖)

𝛁

−𝒖

𝛁𝒖

−𝒖 ⋅ ∇𝒖

Input 

(forcing)

ℋ 𝑦; 𝑘𝑥, 𝑘𝑧, 𝜔
Output (𝒖)

diag(∇, ∇, ∇)

𝐮Ξ

𝛁𝒖

−𝒖 ⋅ ∇𝒖

Input 

(forcing)𝓗𝛁 𝒚; 𝒌𝒙, 𝒌𝒛, 𝝎



FMLABChoice of Norms

• Amplification of kinetic energy density:

ℋ 2
2(𝑘𝑥, 𝑘𝑧) =

1

2𝜋
න

−∞

∞

trace ℋ 𝑦; 𝑘𝑥, 𝑘𝑧 , 𝜔 ℋ∗ 𝑦; 𝑘𝑥, 𝑘𝑧 , 𝜔 𝑑𝜔

• Amplification of most amplified velocity eigenvector:
ℋ ∞ 𝑘𝑥, 𝑘𝑧 = sup

𝜔∈ℝ
ത𝜎 ℋ 𝑦; 𝑘𝑥, 𝑘𝑧 , 𝜔 , 

 ത𝜎 - largest singular value

• ‖ ⋅ ‖∞ represents the “worst case” amplification and is thus 

suited for formulating a stability criterion
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𝑅𝑒 =
ℎ𝑈

𝜈
= 300



FMLABStability Analysis via Small Gain Theorem

• We use the small gain theorem to derive a stability criterion for shear flows that 

accounts for finite disturbance magnitude
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Reprinted from Robust and optimal control, Zhou et al.,1995.

ℋ∇ 𝑦; 𝑘𝑥, 𝑘𝑧, 𝜔

𝐮Ξ

Input 

(forcing)



FMLABStability Analysis via Small Gain Theorem
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ℋ∇ 𝑦; 𝑘𝑥, 𝑘𝑧, 𝜔

𝐮Ξ

Input 

(forcing)

• In our case:
𝐮Ξ ∞ = sup

𝑦∈𝒴
ത𝜎(𝐮Ξ)  = sup

𝑦∈𝒴
𝒖(𝑦) 2 ⇔ maximal disturbance, 𝑢max

              Where 𝒴 = −1,1  for channel flows and 𝒴 = [0, ∞) for boundary layers

• Requirement for stability utilizing the small gain theorem:

sup
𝑦∈𝒴

𝒖(𝑦) 2 < 1/𝛾 ⇔ ℋ∇ ∞ ≤ 𝛾

⇓
sup
𝑦∈𝒴

𝒖(𝑦) 2 ≤ ℋ∇ ∞
−1

• Bound on velocity perturbation magnitude                      

that ensures stability of the system:

𝑢max ≤ ℋ∇ ∞
−1



FMLABStability for 2D modes 

• Couette base flow

• Only 2D modes are considered (𝑘𝑧 = 0)

• Stability for selected perturbations of 

amplitude 𝒖 2 = 10−2.4

• 𝑅𝑒𝑐𝑟 = 320 matches experimental 

results (Tillmark & Alfredsson 1992; Dauchot & 

Daviaud 1995)

• This analysis can be extended to any 

perturbation magnitude
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𝑅𝑒𝑐𝑟𝑖𝑡
𝑆𝑀𝐺 = 320



FMLABStability for 2D modes (𝑘𝑧 = 0)
Poiseuille flow
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Blasius flow

For infinitesimally small disturbance ( 𝒖 2) – results approach LST 

As perturbation size increases – the critical Reynolds number decreases

Unstable for any 

perturbation size

𝑅𝑒𝑐𝑟𝑖𝑡
𝐿𝑆𝑇 = 520𝑅𝑒𝑐𝑟𝑖𝑡

𝐿𝑆𝑇 = 5772𝑅𝑒𝑐𝑟𝑖𝑡
𝑒𝑥𝑝

= 320

Couette flow

• Given large enough perturbation 

magnitude – the flow can become 

unstable

• As the Reynolds number increases – 

smaller perturbations cause instability



FMLABStructured Input-Output Analysis

• Response is quantified by computing structured singular values (SSVs) 

of ℋ∇ (Packard & Doyle 1993)

• SSVs - obtained by solving the minimization problem:

𝜇𝚫𝐮
ℋ∇ =

1

min ത𝜎 𝐮Ξ  ∶  det 𝐼 − ℋ∇𝐮Ξ = 0, 𝐮Ξ ∈ 𝚫𝐮
 ,

ℋ∇ 𝜇𝚫𝐮
= sup

𝜔∈ℝ
𝜇𝚫𝐮

ℋ∇
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𝐮Ξ– Interconnected uncertainty

𝚫𝐮– The structure of the 

interconnected uncertainty

𝝁𝜟𝐮
(⋅) – the largest SSV with 

respect to a structure 𝜟𝐮

ത𝜎(⋅) – largest singular value

det(⋅) – determinant operation
ℋ∇ 𝑦; 𝑘𝑥, 𝑘𝑧, 𝜔

𝐮Ξ

Input 

(forcing)



FMLABStructure of Uncertainty

• 𝚫𝐮 = {𝐮Ξ = 𝐈3×3 ⊗ Δ𝑢, Δ𝑢 = diag 𝑢𝜉 , diag 𝑣𝜉 , diag 𝑤𝜉 : u𝜉 , 𝑣𝜉 , 𝑤𝜉 ∈ ℂ𝑁𝑦×1}

• 𝚫𝐮 - uncertainty structure that matches the structure of 𝐮Ξ
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𝚫𝐮

𝑢
𝑣 𝑤

• 𝐮Ξ - diagonal block matrix with repeating blocks, where 

the blocks have 3 diagonals

• Computing SSVs under 𝚫𝐮 requires complex set of 

constraints to preserve the structure of 𝐮Ξ

Such a solution has not yet been found



FMLABApproximating the structure of 𝚫𝐮 

• Repeated full – block matrix (Mushtaq, et al., 2024)

𝚫𝑟 = {𝐈3×3 ⊗ Δ𝑟: Δ𝑟 ∈ ℂ3𝑁𝑦×𝑁𝑦}

• Full – block matrix with different blocks (Liu and Gayme, 

2021)

𝚫𝑛𝑟 = {diag Δ1, Δ2, Δ3 : Δ𝑖 ∈ ℂ3𝑁𝑦×𝑁𝑦 , 𝑖 ∈ {1,2,3}}
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𝚫𝑛𝑟

𝚫𝑟



FMLABStructured Stability Analysis

• Our stability criterion based on the small gain theorem can be updated to account for 

the structure of the nonlinear term

• Structured analysis:

– Accurate                   

structure:

– Approximated                    

structures:

 

      

• Unstructured analysis:

𝑢max ≤ ℋ∇ ∞
−1 𝑘𝑥 , 𝑘𝑧
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𝑢max ≤ ℋ∇ 𝜇𝚫𝐮

−1 𝑘𝑥 , 𝑘𝑧

𝑢max ≤ ℋ∇ 𝜇𝚫𝑟

−1 𝑘𝑥 , 𝑘𝑧

𝑢max ≤ ℋ∇ 𝜇𝚫𝑛𝑟

−1 𝑘𝑥, 𝑘𝑧



FMLABStructure Effect on Stability

• Blasius flow, (Re − 𝑘𝑥) maps for 𝑘𝑧 = 0:

• Outside the neutral curve region, similar 
behavior between structured and 
unstructured cases

• Imposing structure shows that the least 
stable region is confined to a neutral curve 
envelope.

• Blasius flow, (𝑘𝑧 − 𝑘𝑥)  maps for 𝑅𝑒 = 400:

• Least stable modes:

• The spatial shape of the least stable mode depends on the 
structure of the nonlinearity

• For the case of repeated blocks –a wide range of dominant 
unstable modes is possible.
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Unstructured: Non-repeated:

Neutral curve

Unstable for any 

perturbation size

Streaky structures Oblique waves

TS waves Oblique waves

Streaky structures

𝑥
𝑧

𝑦𝑥
𝑧

𝑦



FMLABConclusions

• We derived a stability criterion to analyze shear flows and boundary layers based on disturbance 

magnitude, utilizing the small gain theorem.

– Converges to LST predictions of critical Reynolds number for infinitesimal disturbances

– Expands on linear stability theory (LST) by allowing for finite-amplitude perturbations

• Predicts instability of Couette flow as observed in experiments in contrast to LST predictions

• Shows that flow can become unstable for a wide range of Reynolds numbers, depending on the 

magnitude of perturbations present in the flow

• Can be modified to include constraints on the structure of the nonlinearity using structured singular 

values 

• Streaky structures, which are shown to be dominant in unstructured I/O approach, lose their 

dominance when using structured I/O approaches. 

• Our approach allows to analyze flow stability in noisy environments, such as in real-life applications 

and wind tunnel experiments, and explore bypass transition scenarios. 19
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Thank You!

20



FMLAB

Backup slides
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FMLABLinear State-Space
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FMLABℋ Operator Components
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FMLABEigenvalues
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FMLABNavier-Stokes equations for perturbations

𝜕𝑡𝒖 = −𝑈 ⋅ ∇𝒖 − 𝒖 ⋅ ∇U − ∇𝑝 +
1

𝑅𝑒
∇2𝒖 − 𝒖 ⋅ ∇𝒖

Nonliear
 term

+ 𝒇

• 𝒇 – Forcing term (input)

• 𝒖 = 𝑢, 𝑣, 𝑤 𝑇 – Velocity perturbation vector (output)

• 𝑈 – Base flow (laminar solution)

• 𝑝 – Pressure perturbation

• The nonlinear term can be rewritten as follows:
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FMLABStructure of 𝐮Ξ 

ത𝜎 𝐮Ξ = 𝜆max 𝐮Ξ
𝑇𝐮Ξ ,

ത𝜎 𝐮Ξ = 𝑢2 + 𝑣2 + 𝑤2

𝐮Ξ ∞ = sup
𝑦∈𝒴

ത𝜎 𝐮Ξ = sup
𝑦∈𝒴

𝑢2 + 𝑣2 + 𝑤2 = sup
𝑦∈𝒴

𝒖 𝑦 2
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FMLABApproximating the structure of 𝚫𝐮 

• Repeated full – block matrix (Mushtaq, et al., 2024)
𝚫𝑟 = {𝐈3×3 ⊗ Δ𝑟: Δ𝑟 ∈ ℂ3𝑁𝑦×𝑁𝑦}

• Full – block matrix with different blocks (Liu and 

Gayme, 2021)
𝚫𝑛𝑟 = {diag Δ1, Δ2, Δ3 : Δ𝑖 ∈ ℂ3𝑁𝑦×𝑁𝑦 , 𝑖 ∈ {1,2,3}}

• These imply the following relations between the sets:
𝚫𝐮 ⊂ 𝚫𝑟 ⊂ 𝚫𝑛𝑟 ⊂ ℂ3𝑁𝑦×𝑁𝑦

Solving the SSV minimization problem yields the following 

behavior:
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𝚫𝑛𝑟

𝚫𝑟

ℋ∇ 𝜇𝚫𝐮

−1 𝑘𝑥, 𝑘𝑧 ≥ ℋ∇ 𝜇𝚫𝑟

−1 𝑘𝑥, 𝑘𝑧 ≥ ℋ∇ 𝜇𝚫𝑛𝑟

−1 𝑘𝑥, 𝑘𝑧 ≥ ℋ∇ ∞
−1 𝑘𝑥, 𝑘𝑧



FMLAB

𝚫𝐮 ⊂ 𝚫𝒓 ⊂ 𝚫𝒏𝒓 ⊂ ℂ𝑁𝑦×3𝑁𝑦

Optimization-Based Approach to Computing Amplification
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min
𝐮𝚵∈ℂ𝑁𝑦×3𝑁𝑦

ത𝜎 𝐮𝚵 < min
𝐮𝚵∈𝚫𝒏𝒓

ത𝜎 𝐮𝚵 < min
𝐮𝚵∈𝚫𝒓

ത𝜎 𝐮𝚵 < min
𝐮𝚵∈𝚫𝐮

ത𝜎 𝐮𝚵

ത𝜎 > 𝜇𝚫𝒏𝒓
> 𝜇𝚫𝒓

> 𝜇𝚫𝐮

ℋ∇ ∞ > ℋ∇ 𝜇𝚫𝒏𝒓
> ℋ∇ 𝜇𝚫𝒓

> ℋ∇ 𝜇𝚫𝐮
≥ real value

Best approximationBest available 

approximation



FMLABResults – Range of Reynolds Numbers (Blasius)

• Linear analysis predicts explosive growth at 𝑅𝑒 → 520 

• Nonlinear mechanisms cause a decay of the 

amplification of the TS mode - distributing energy 

between oblique modes
29

ℋ∇ ∞ → ∞Change of dominant mode

DLR (Dominant low 

Reynolds)

TS (Tollmien-

Schlichting)

SPS (Spanwise 

periodic streaks)

𝑅𝑒 = 520

y

x
z

U(y)



FMLABResults – Range of Reynolds Numbers (Poiseuille)

• Similar trends to Blasius case (at appropriate 𝑅𝑒)

• All results comply with the hierarchical behavior:
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𝑅𝑒 = 5772 DLR (Dominant low 

Reynolds)

TS (Tollmien-

Schlichting)

SPS (Spanwise 

periodic streaks)

ℋ∇ ∞ → ∞Change of dominant mode

ℋ∇ 𝜇𝚫𝑢
𝑘𝑥, 𝑘𝑧 ≤ ℋ∇ 𝜇𝚫𝑟

𝑘𝑥, 𝑘𝑧 ≤ ℋ∇ 𝜇𝚫𝑛𝑟
𝑘𝑥, 𝑘𝑧 ≤ ℋ∇ ∞ 𝑘𝑥, 𝑘𝑧

U(y)

y

x
z



FMLABStability for 3D modes
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• Couette base flow

• Stability for perturbations of 

amplitude 10−3

• 3D modes have both 𝑘𝑥 and 𝑘𝑧 

components



FMLABStability for 3D modes
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• Blasius base flow



FMLABGeneralized Power Iteration
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Reprinted from Mushtaq, Bhattacharjee, Seiler, and Hemati, 2022.
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