An Optimal Control Framework for Reliable & Sustainable Bus Operation

GSC'25

July 2025

Assaf Granot

Supervisor: Assoc. Prof. Jack Haddad

Agenda

\triangleright	Motivation
	Methodology
	Case Studies
Ŵ	Results
,,,	Conclusion Remarks

Motivation

An optimal control framework for reliable and sustainable public transit operation

By Felix O - 55 Buses, Clapton Pond Uploaded by oxyman, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=10935479

Motivation

An optimal control framework for reliable and sustainable public transit operation

To provide an efficient and sustainable service

To deliver service as planned

Motivation

An optimal control framework for reliable and sustainable public transit operation

State of the art

The two objectives have been studied separately

State of the Practice

Initial approaches have seen limited implementation globally

Methodology

Developed Simulation Framework

SMART TECHNION SUSTAINABLE MOBILITY ANI ROBUST TRANSPORTATION LABORATOR

Passengers data

SMART TECHNION SUSTAINABLE MOBILITY AND ROBUST TRANSPORTATION LABORATORY

Bus Transport System Modeling

Simulating Traffic Conditions

https://tiltan.ayalonhw.co.il/tiltan/App.aspx

*Calibrated using real TOM open-source public transit data – GTFS & SIRI-VM formats

Bus Transport System Modeling

Simulating Passengers & Demand

Bus *i* passenger accumulation *n* at stop *s*:

$$n_i^s = \lambda_i^s (t_i^s - t_{i+1}^s) + (1 - \mu_i^s) * n_i^{s-1}$$

Bus *i* is expected to find $\lambda_i^s(t_i^s - t_{i+1}^s)$ passengers, as λ varies at each stop following demand profile

 $\mu_i^s \rightarrow \text{alighting proportion at stop s following demand profile}$

$$0 \le n_i^s \le n_{\max}$$
$$0 \le \mu_i^s \le 1$$
$$0 \le \lambda_i^s$$

Mass of bus *i*:

$$m_i(t) = m_{emp} + n_i(t) * m_{pax}$$

 $m_{\rm pax} \rightarrow$ An average passenger mass [kg]

$$m_{\rm emp} \le m_i(t) \le m_{\rm full}$$

Bus Simulation (Plant)

State

Passengers

*Luethi, M., Weidmann, U., and Nash, A. (2007). Passenger arrival rates at public transport stations. InTRB 86th Annual Meeting Compendium of Papers, pages 07–0635. Transportation Research Board.

Energy Model

Varga, Balázs, Tamás Tettamanti, and Balázs Kulcsár. "Energy-aware predictive control for electrified bus networks." Applied Energy 252 (2019): 113477.

Developed Simulation Framework

Optimal Control Framework

Decentralized Model Predictive Control

Optimization Module (Controller)

> Internal prediction MPC similar to the plant

Case Studies & Results

Line 1 (81001) – Simulation

Bus Transport System Setting

*https://markav.net/line/81001/

Parameter	Numerical Value	Units
Route length	22,000	[m]
Number of buses	6	[—]
Number of stops	51	[-]
Bus headway	10	[min]
Speed boundaries	[0, 50]	$\left[\frac{km}{hr}\right]$
Acceleration boundaries	[-2, 1]	$\left[\frac{m}{s^2}\right]$
Passenger accumulation boundaries	[0, 80]	[pax]

Key Metric of Stability – Cvh

Coefficient of Variation of Headways

 $C_{vh} = \frac{\sigma_{Hd}}{H} \implies \sigma_{Hd}$ - Standard deviation of the deviations from the scheduled headway H - Scheduled headway between two consecutive trips

- 1. The scheduled headway of a certain line is every 10 minutes.
- 2. In practice, the measured headways at a certain stop are 12, 8, 14, 6, 13, 7.
- 3. Therefore, the deviations from the scheduled headway are +2, -2, +4, -4, +3, -3.
 - 4. The standard deviation of the deviations from the headway is 3.4.
- 5. Hence, the value of the headway variance index is 0.34 and the level of service is "C" (Moderate)*.

Results – Line 1 (81001)

Moderate inconsistency in departures was examined

Cvh of Line 1 - 81001

Results – Line 1 (81001)

Moderate inconsistency in departures was examined

Examined Routes – Peak Hours [6-8 AM]

Examined Routes – Peak Hours [6-8 AM]

	Line no.	Frequency $\left[\frac{trtps}{hr}\right]$	Route length [<i>km</i>]	Vehicle Type
81001	1	6	21.8	Articulated bus
16061	61	6	12.7	Urban bus
55008	8	8	14.7	Urban bus
29082	82	10	17.3	Urban bus
27004	4	10	11.8	Urban bus

High-frequency routes with heavy demand and significant traffic

Results

Moderate inconsistency in departures was examined

60% reductions in deviations from reference headway

Line 1 - For Example: Average HW error without control - ~250 seconds

Average HW error with control - ~100 seconds

Results

More than 13% *Energy savings* ~0.2 $\frac{kWh}{km}$ consumption reduction $\rightarrow 0.15 \frac{NIS}{km}$ savings Х **In Israel**: 300,000,000 km urban service per year^{*} ~50,000,000 $\left[\frac{NIS}{vear}\right]$ Potential Savings

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.gov.il/BlobFolder/reports/specia l reports/he/%D7%A8%D7%99%D7%9B%D7%95%D7%96%20%D7%A0%D7%AA%D7%95%D7% A0%D7%99%D 1%D7%95%D7%A8%D7%99%D7%AA-%20%D7%99%D7%95%D7%9C%D7%99%202021.pdf

Results

Impact on actual travel time:

Impact on passengers' perceived travel time*: ~0.5-1 min. Waiting time reduction per passenger

Waiting Time per Passenger Comparison

91,40

SLC

89.47

SLHC

91 27

HC

~1-2 min. Waiting time reduction per passenger

150

100.00

NC

Conclusions

Public Transport System

- Combining speed limit and holding strategies yields the most effective headway regulation
- Total travel time remains nearly unchanged, as reduced waiting offsets increased in-vehicle time

Energy Consumption

Speed limit control alone maximizes energy efficiency

Control System

 The framework remains robust across diverse case studies and under various disturbances and uncertainties

Future Work

Public Transport System

- Exploring traffic light priority as a control strategy
- Expanding the research to different modes Light rails & Metro
- We aim to test the methodology on a real bus line and assess its performance

Energy Consumption

• Assessment of external factors: temperature, different terrains, and vehicle types

Control System

- Evaluation and comparison of different control horizons
- Add driver's non-compliance with control inputs

Thank You!

