Tractable downfall of basis pursuit in structured sparse optimization

Maya V. Marmary Christian Grussler

Technion - Israel Institute of Technology

IAAC Graduate Students in Systems and Control Conference, July 2025

Table of Contents

1 Introduction

4 Concluding remarks

Table of Contents

1 Introduction

2 Main Result

3 Visualization

4 Concluding remarks

Sparse minimization

$$V \in \mathbb{R}^{m \times n}, \ m < n, \ y \in \mathbb{R}^n$$

- Compressed Sensing & ML
- System Id. & Model Reduction
- Sensor & Actuator Selection
- Fuel Optimal Control

Sparse minimization

$$V \in \mathbb{R}^{m \times n}, \ m < n, \ y \in \mathbb{R}^n$$

- Compressed Sensing & ML
- System Id. & Model Reduction
- Sensor & Actuator Selection
- Fuel Optimal Control

ℓ_1 Minimization	
	n
$\underset{u\in\mathbb{R}^{n}}{minimize}$	$ u _{\ell_1} := \sum_{i=1}^n u_i $
subject to	Vu = y.

Mutual Coherence and Restricted Isometry Property

• Mutual Coherence: For a matrix $V \in \mathbb{R}^{m \times n}$ with columns v_1, \ldots, v_n , the mutual coherence is defined as

$$\mu(V) = \max_{1 \le i \ne j \le n} \frac{|\langle v_i, v_j \rangle|}{\|v_i\|_2 \|v_j\|_2} = \cos \theta_{ij}.$$

Lower $\mu(V)$ indicates that the columns of V are less correlated. A solution is guaranteed to be sparse if $\|u^*\|_0 < 1/2(1+1/\mu(V))$

Mutual Coherence and Restricted Isometry Property

• Mutual Coherence: For a matrix $V \in \mathbb{R}^{m \times n}$ with columns v_1, \ldots, v_n , the mutual coherence is defined as

$$\mu(V) = \max_{1 \le i \ne j \le n} \frac{|\langle v_i, v_j \rangle|}{\|v_i\|_2 \|v_j\|_2} = \cos \theta_{ij}.$$

Lower $\mu(V)$ indicates that the columns of V are less correlated. A solution is guaranteed to be sparse if $\|u^*\|_0 < 1/2(1+1/\mu(V))$

• Restricted Isometry Property (RIP): A matrix V satisfies the RIP of order s with constant $\delta_s \in (0, 1)$ if, for every s-sparse vector x,

$$(1 - \delta_s) \|x\|_2^2 \le \|Vx\|_2^2 \le (1 + \delta_s) \|x\|_2^2.$$

This property ensures that V approximately preserves the ℓ_2 -norm of sparse signals.

 \implies **Problem:** NP-hard to verify and often not practical!

Fuel Optimal Control

$\begin{array}{l} L_0 \text{ Minimization} \\ \\ \text{minimize } & \|u\|_{L_0} := \int_0^T |\text{sign}(u(t)| dt \\ \\ \text{subject to } & \dot{x} = Ax + bu \\ & x(0) = \xi, \; x(T) = 0 \end{array}$

 $L_1 \text{ Minimization}$ minimize $||u||_{L_1} := \int_0^T |u(t)| dt$ subject to $\dot{x} = Ax + bu$ $x(0) = \xi, \ x(T) = 0$

=

Table of Contents

1 Introduction

3 Visualization

4 Concluding remarks

Alignment property: $\|V^{\mathsf{T}}\beta^*\|_{\infty} = u^{*\mathsf{T}}\underbrace{V^{\mathsf{T}}\beta^*}_{\tilde{\beta}^*} = \|u^*\|_1$

2

Alignment property:
$$\|V^{\mathsf{T}}\beta^*\|_{\infty} = u^{*\mathsf{T}}\underbrace{V^{\mathsf{T}}\beta^*}_{\tilde{\beta}^*} = \|u^*\|_1$$

$$\tilde{\beta}^* \in \mathsf{Im}(V^{\mathsf{T}}) = \mathsf{Im}\left(\begin{bmatrix}I_m\\ \begin{bmatrix}V_{(1:m,:)}^{-1}V_{(:,m+1:n)}\end{bmatrix}^{\mathsf{T}}\end{bmatrix}\right).$$

8 / 20

Theorem

Let $u^* \in \mathbb{R}^n$ be a solution to ℓ_0 problem, where $V \in \mathbb{R}^{m \times n}$ is such that $V_{(:,1:m)}$ is invertible. Then, u^* is not a solution of ℓ_1 problem if there exists an $i^* \in (m+1:n)$ with $u_i^* \neq 0$ and $\|V_{(:,1:m)}^{-1}V_{(:,i^*)}\|_{\ell_1} < 1$.

1

Alignment property:
$$\|V^{\mathsf{T}}\beta^*\|_{\infty} = u^{*\mathsf{T}}\underbrace{V^{\mathsf{T}}\beta^*}_{\tilde{\beta}^*} = \|u^*\|_1$$

$$\tilde{\boldsymbol{\beta}}^* \in \mathsf{Im}(\boldsymbol{V}^{\mathsf{T}}) = \mathsf{Im}\left(\begin{bmatrix} \boldsymbol{I}_m \\ \begin{bmatrix} \boldsymbol{V}_{(1:m,:)}^{-1} \boldsymbol{V}_{(:,m+1:n)} \end{bmatrix}^{\mathsf{T}} \end{bmatrix} \right)$$

Tractable removal of "unhelpful" entries

Goal: Systematic removal of "unhelpful" entries.

Observation:

• If
$$b = \mathbf{1}_m \in \mathbb{R}^m$$
, $A = \text{diag}(\lambda_1, \dots, \lambda_m)$, $\lambda_i \ge 0$ and $V = \begin{bmatrix} b & Ab & \dots & A^Nb \end{bmatrix}$, then
 $p_i = \|V_{(1:m,:)}^{-1}V_{(::m+1:i)}\|_1 = \mathbf{1}_m^\mathsf{T}WV_{(1:m,:)}^{-1}V_{(::m+1:i)}$

is part of an impulse response.

 \implies (Schur-)Stable A and large enough N, $p_i < 1$ for $i \ge I^*$.

 $\bullet\,$ Tractability by unimodality of p

 \implies Simple binary search to find smallest I^* with $p_{I^*} < 1$.

Variation & Unimodality

• Variation of a Vector: For $p \in \mathbb{R}^n$

$$S(p) := \#$$
 of sign changes (after deleting zeros)

Variation & Unimodality

• Variation of a Vector: For $p \in \mathbb{R}^n$

S(p) := # of sign changes (after deleting zeros)

Unimodality: Let (Δp)_i := p_{i+1} − p_i, then p is unimodal if S(Δp) ≤ 1 and a possible sign change in Δp occurs from positive to negative.

Variation & Unimodality

• Variation of a Vector: For $p \in \mathbb{R}^n$

S(p) := # of sign changes (after deleting zeros)

• Unimodality: Let $(\Delta p)_i := p_{i+1} - p_i$, then p is unimodal if $S(\Delta p) \le 1$ and a possible sign change in Δp occurs from positive to negative.

• k-Variation Bounding (VB_k): A matrix $X \in \mathbb{R}^{k \times n}$ with k > n is k-variation bounding if for every $u \in \mathbb{R}^n \setminus \{0\}$,

 $\mathsf{S}(Xu) \le k - 1.$

Sign Consistency & Variation Bounding

For $X \in \mathbb{R}^{m \times n}$, m > n,

• *m*-Variation Bounding (VB_{*m*}): X is *m*-variation bounding if for every $u \in \mathbb{R}^n \setminus \{0\}$,

 $\mathsf{S}(Xu) \le m - 1.$

Sign Consistency & Variation Bounding

For $X \in \mathbb{R}^{m \times n}$, m > n ,

• *m*-Variation Bounding (VB_{*m*}): X is *m*-variation bounding if for every $u \in \mathbb{R}^n \setminus \{0\}$,

$$\mathsf{S}(Xu) \le m - 1.$$

• X is m-sign consistent if all its minors of order m share the same sign.

Sign Consistency & Variation Bounding

For $X \in \mathbb{R}^{m \times n}$, m > n,

• *m*-Variation Bounding (VB_{*m*}): X is *m*-variation bounding if for every $u \in \mathbb{R}^n \setminus \{0\}$,

$$\mathsf{S}(Xu) \le m - 1.$$

• X is m-sign consistent if all its minors of order m share the same sign.

VB_m versus **SC**_m (Lemma): For $X \in \mathbb{R}^{m \times n}$ with m > n and $\mathsf{rk}(X) = n$, X is m-variation bounding (VB_m) if and only if it is m-sign consistent (SC_m).

Main result - Unimodality

Theorem

Let $V \in \mathbb{R}^{m \times n}$, m < n, be such that $V \in SC_m$, $\Delta((\mathbf{1}_m^{\mathsf{T}}V)^{\mathsf{T}}) \in VB_m$ and $\det(V_{(:,1:m)}) \neq 0$. Then, $p \in \mathbb{R}^n$ defined by

$$p_k := \|V_{(:,1:m)}^{-1}V_{(:,\{k\})}\|_{\ell_1}, \ k \in (1:n)$$

is unimodal .

▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}} \quad \text{and} \quad Q := W W_{(1:m,:)}^{-1} K_m.$$

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}} \quad \text{and} \quad Q := W \, W_{(1:m,:)}^{-1} K_m.$$

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive.

•
$$\Delta \mathbf{1}_m^\mathsf{T} W \in \mathsf{VB}_m \Rightarrow$$

$$\mathsf{S}(\Delta Q \, \mathbf{1}_m) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \, \mathbf{1}_m) \le m - 1.$$

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}} \quad \text{and} \quad Q := W W_{(1:m,:)}^{-1} K_m.$$

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta \mathbf{1}_m^{\mathsf{T}} W \in \mathsf{VB}_m \Rightarrow$

$$\mathsf{S}(\Delta Q \, \mathbf{1}_m) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \, \mathbf{1}_m) \le m - 1.$$

▶ The first m rows of $\Delta Q \mathbf{1}_m$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1}_m = \Delta K_m \, \mathbf{1}_m = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}$$

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}} \quad \text{and} \quad Q := W W_{(1:m,:)}^{-1} K_m.$$

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta \mathbf{1}_m^{\mathsf{T}} W \in \mathsf{VB}_m \Rightarrow$

$$\mathsf{S}(\Delta Q \,\mathbf{1}_m) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \,\mathbf{1}_m) \le m - 1.$$

▶ The first m rows of $\Delta Q \mathbf{1}_m$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1}_m = \Delta K_m \mathbf{1}_m = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}$$

►
$$p_{(m+1:n)} = Q_{(m+1:n,:)}$$
, $\Rightarrow \mathsf{S}(\Delta p(m:n)) \le 1$.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W:=V^{\mathsf{T}} \quad \text{and} \quad Q:=WW_{(1:m,:)}^{-1}K_m.$$

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta \mathbf{1}_m^{\mathsf{T}} W \in \mathsf{VB}_m \Rightarrow$

$$\mathsf{S}(\Delta Q \, \mathbf{1}_m) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \, \mathbf{1}_m) \le m - 1.$$

▶ The first m rows of $\Delta Q \mathbf{1}_m$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1}_m = \Delta K_m \, \mathbf{1}_m = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}$$

- $\blacktriangleright p_{(m+1:n)} = Q_{(m+1:n,:)}, \Rightarrow \mathsf{S}(\Delta p(m:n)) \le 1.$
- Finally, the single sign change in $\Delta p(m:n)$ must be due to a negative entry, which implies that p is unimodal.

Corollary

Corollary

Let $V \in \mathbb{R}^{m \times m}$ defined as in the previous theorem. Further, let $T \in \mathbb{R}^{m \times m}$ be invertible, $\overline{V} = TV$ and

$$p(k) := \|\mathbf{1}_m^{\mathsf{T}} \bar{V}_{(:,1:m)}^{-1} \bar{V}_{(:,m+k)}\|_{\ell_1}$$

for all $k \ge 1$. Then, the sequence $\{p(k)\}_{k\ge 1}$ is unimodal.

- In other words: mpulse response is realization independent
- Applies to Hankel, Page, Toeplitz matrices, ...

Log-Concavity

Theorem

Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^m$ be such that A is diagonalizable and (A, b) controllable. Further, let $V = C(A, b) \in SC_m$ and

$$g_{(i)}(k) := W_k^T e_i, \ i \in (1:m)$$
$$p(k) := W_k^T \mathbf{1}_m$$

where

$$W_k := K_m^T V_{(:,1:m)}^{-1} V_{(:,m+k)}, \ k \ge 1.$$

Then, the sequences $\{g_{(i)}(k)\}_{k\geq 1}$ for each $i \in (1:m)$ and $\{p(k)\}_{k\geq 1}$ are log-concave.

Log-Concavity

Theorem

Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^m$ be such that A is diagonalizable and (A, b) controllable. Further, let $V = C(A, b) \in SC_m$ and

$$g_{(i)}(k) := W_k^T e_i, \ i \in (1:m)$$
$$p(k) := W_k^T \mathbf{1}_m$$

where

$$W_k := K_m^T V_{(:,1:m)}^{-1} V_{(:,m+k)}, \ k \ge 1.$$

Then, the sequences $\{g_{(i)}(k)\}_{k\geq 1}$ for each $i \in (1:m)$ and $\{p(k)\}_{k\geq 1}$ are log-concave.

Hidden Gem: The transformation induced by W_k yields the companion matrix of A.

Characteristic Polynomial

Theorem

Let $A \in \mathbb{R}^{m \times m}$ have characteristic polynomial

$$\det(sI - A) = s^{m} + \alpha_{m-1}s^{m-1} + \dots + \alpha_{1}s + \alpha_{0},$$

with $\sum_{i=0}^{m-1} |\alpha_i| < 1$, and let $b \in \mathbb{R}^m$ be such that the pair (A, b) is controllable. Then, for the controllability matrix V = C(A, b) it holds

$$\|V_{(:,1:m)}^{-1}V_{(:,m+k)}\|_{\ell_1} < 1$$
 for all $k \ge 0$.

Table of Contents

1 Introduction

2 Main Result

3 Visualization

4 Concluding remarks

Sparse minimization (G)

$$V = \begin{bmatrix} b & Ab & \dots & A^{N-1}b \end{bmatrix} \begin{bmatrix} u(N-1) & \dots & u(0) \end{bmatrix}^{\mathsf{T}}$$

Table of Contents

1 Introduction

2 Main Result

3 Visualization

- Deterministic framework that provides failure guarantees for basis pursuit for special matrix structures.
- Complements (conservative) success guarantees
- New avenue for study of sparse/low-rank optimization problems
- Future work: sparsity in terms of singular values and rank minimization.