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Sparse minimization

V ∈ Rm×n, m < n, y ∈ Rn

`0 Minimization

minimize
u∈Rn

‖u‖`0 :=
n∑
i=1
|sign(ui)|

subject to V u = y.

Compressed Sensing & ML

System Id. & Model Reduction

Sensor & Actuator Selection

Fuel Optimal Control

?=
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minimize
u∈Rn

‖u‖`1 :=
n∑
i=1
|ui|
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Mutual Coherence and Restricted Isometry Property

Mutual Coherence: For a matrix V ∈ Rm×n with columns v1, . . . , vn, the mutual
coherence is defined as

µ(V ) = max
1≤i 6=j≤n

|〈vi, vj〉|
‖vi‖2 ‖vj‖2

= cos θij .

Lower µ(V ) indicates that the columns of V are less correlated. A solution is guaranteed
to be sparse if ‖u∗‖0 < 1/2(1 + 1/µ(V ))

Restricted Isometry Property (RIP): A matrix V satisfies the RIP of order s with
constant δs ∈ (0, 1) if, for every s-sparse vector x,

(1− δs)‖x‖22 ≤ ‖V x‖22 ≤ (1 + δs)‖x‖22.

This property ensures that V approximately preserves the `2-norm of sparse signals.

=⇒ Problem: NP-hard to verify and often not practical!
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Fuel Optimal Control

L0 Minimization

minimize ‖u‖L0 :=
∫ T

0
|sign(u(t)|dt

subject to ẋ = Ax+ bu

x(0) = ξ, x(T ) = 0

=

L1 Minimization

minimize ‖u‖L1 :=
∫ T

0
|u(t)|dt

subject to ẋ = Ax+ bu

x(0) = ξ, x(T ) = 0

0 0.5 1 1.5 2 2.5 3
−1

0

1

t

u

Bang-Off-Bang Control
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Main result - Failure Guarantees

Theorem
Let u∗ ∈ Rn be a solution to `0 problem, where V ∈ Rm×n is such that V(:,1:m) is invertible.
Then, u∗ is not a solution of `1 problem if there exists an i∗ ∈ (m+ 1 : n) with u∗i 6= 0 and
‖V −1

(:,1:m)V(:,i∗)‖`1 < 1.

1

Alignment property: ‖V Tβ∗‖∞ = u∗T V Tβ∗︸ ︷︷ ︸
β̃∗

= ‖u∗‖1

2

β̃∗ ∈ Im(V T) = Im

 Im[
V −1

(1:m,:)V(:,m+1:n)
]T
 .
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Tractable removal of "unhelpful" entries

Goal: Systematic removal of "unhelpful" entries.

Observation:

If b = 1m ∈ Rm, A = diag(λ1, . . . , λm), λi ≥ 0 and V =
[
b Ab . . . ANb

]
, then

pi = ‖V −1
(1:m,:)V(:,m+1:i)‖1 = 1T

mWV −1
(1:m,:)V(:,m+1:i)

is part of an impulse response.

=⇒ (Schur-)Stable A and large enough N , pi < 1 for i ≥ I∗.

Tractability by unimodality of p
pi − 1

i

=⇒ Simple binary search to find smallest I∗ with pI∗ < 1.
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Variation & Unimodality
Variation of a Vector: For p ∈ Rn

S(p) := # of sign changes (after deleting zeros)

1 2 3 4 5 6 7
−1

0
1

i

p
i

Unimodality: Let (∆p)i := pi+1 − pi, then p is unimodal if S(∆p) ≤ 1 and a possible
sign change in ∆p occurs from positive to negative.

pi − 1

i

k-Variation Bounding (VBk): A matrix X ∈ Rk×n with k > n is k-variation bounding
if for every u ∈ Rn \ {0},

S(Xu) ≤ k − 1.
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Sign Consistency & Variation Bounding

For X ∈ Rm×n, m > n,
m-Variation Bounding (VBm): X is m-variation bounding if for every u ∈ Rn \ {0},

S(Xu) ≤ m− 1.

X is m-sign consistent if all its minors of order m share the same sign.

VBm versus SCm (Lemma): For X ∈ Rm×n with m > n and rk(X) = n, X is m-variation
bounding (VBm) if and only if it is m-sign consistent (SCm).
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Main result - Unimodality

Theorem

Let V ∈ Rm×n, m < n, be such that V ∈ SCm, ∆((1T
mV )T) ∈ VBm and det(V(:,1:m)) 6= 0.

Then, p ∈ Rn defined by

pk := ‖V −1
(:,1:m)V(:,{k})‖`1 , k ∈ (1 : n)

is unimodal .
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Proof outline
I By definition p(1:m) = 1m, does this implies S(∆p(m:n)) ≤ 1.

I Define
W := V T and Q := W W−1

(1:m,:)Km.

I Because W ∈ SCm, then from TP properties ⇒ Q(m+1:n,:) is totally positive.
I ∆1T

mW ∈ VBm ⇒

S(∆Q1m) = S(∆W W−1
(1:m,:)Km 1m) ≤ m− 1.

I The first m rows of ∆Q1m contribute m− 2 sign changes

(∆Q)(1:m,:) 1m = ∆Km 1m =


...
2
−2
2

 .
I p(m+1:n) = Q(m+1:n,:),⇒ S(∆p(m : n)) ≤ 1.
I Finally, the single sign change in ∆p(m : n) must be due to a negative entry, which implies

that p is unimodal.
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Corollary

Corollary
Let V ∈ Rm×m defined as in the previous theorem. Further, let T ∈ Rm×m be invertible,
V̄ = TV and

p(k) := ‖1T
mV̄
−1

(:,1:m)V̄(:,m+k)‖`1

for all k ≥ 1. Then, the sequence {p(k)}k≥1 is unimodal.

In other words: mpulse response is realization independent

Applies to Hankel, Page, Toeplitz matrices, ...
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Log-Concavity

Theorem

Let A ∈ Rm×m and b ∈ Rm be such that A is diagonalizable and (A, b) controllable. Further,
let V = C(A, b) ∈ SCm and

g(i)(k) := W T
k ei, i ∈ (1 : m)

p(k) := W T
k 1m

where
Wk := KT

mV
−1

(:,1:m)V(:,m+k), k ≥ 1.

Then, the sequences {g(i)(k)}k≥1 for each i ∈ (1 : m) and {p(k)}k≥1 are log-concave.

Hidden Gem: The transformation induced by Wk yields the companion matrix of A.
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Characteristic Polynomial

Theorem
Let A ∈ Rm×m have characteristic polynomial

det
(
sI −A

)
= sm + αm−1s

m−1 + · · ·+ α1s+ α0,

with
m−1∑
i=0
|αi| < 1, and let b ∈ Rm be such that the pair (A, b) is controllable. Then, for the

controllability matrix V = C(A, b) it holds∥∥V −1
(:,1:m) V(:,m+k)

∥∥
`1
< 1 for all k ≥ 0.
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Sparse minimization (G)

V =
[
b Ab . . . AN−1b

] [
u(N − 1) . . . u(0)

]T

100 200 300 400 5000

4

8

12

·105

Index

p
k
−

1

A = diag
([

0.98 0.97 0.96 0.95 0.94
])

10 20 30 40 50
0

10
20
30
40
50
60

Index

p
k
−

1

A = diag
([

0.8 0.7 0.6 0.5 0.4
])
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Concluding remarks

Deterministic framework that provides failure guarantees for basis pursuit for special
matrix structures.

Complements (conservative) success guarantees

New avenue for study of sparse/low-rank optimization problems

Future work: sparsity in terms of singular values and rank minimization.
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