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Sparse minimization

VeR™™ m<n, ycR"”

lo Minimization

n
minimize ||ull¢, = ; |sign (u;)|

subject to Vu =y.

o Compressed Sensing & ML
@ System Id. & Model Reduction
@ Sensor & Actuator Selection

@ Fuel Optimal Control
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Mutual Coherence and Restricted Isometry Property
@ Mutual Coherence: For a matrix V € R™*™ with columns v, ..., v,, the mutual
coherence is defined as

) — (05,

_ = cosb;;.
1<i5<n vz v ll2 N

Lower 1(V') indicates that the columns of V' are less correlated. A solution is guaranteed
to be sparse if ||u*|lo < 1/2(1+1/u(V))

5/20



Mutual Coherence and Restricted Isometry Property

@ Mutual Coherence: For a matrix V € R™*™ with columns v, ..., v,, the mutual
coherence is defined as

w(V) = max i 0| = cos 0;;.

- aiEi<n [uill2 ||vj 2

Lower 1(V') indicates that the columns of V' are less correlated. A solution is guaranteed
to be sparse if ||u*|lo < 1/2(1+1/u(V))

o Restricted Isometry Property (RIP): A matrix V satisfies the RIP of order s with
constant 05 € (0, 1) if, for every s-sparse vector z,

2 2 2
(1= ds)[lzllz < [[Vzllz < (14 65)zl2.
This property ensures that V' approximately preserves the ¢3-norm of sparse signals.

—> Problem: NP-hard to verify and often not practical!
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Fuel Optimal Control
Ly Minimization L1 Minimization

T
minimize  |jul|, ::/ |sign (u(t)|dt
0

subject to 4 = Ax + bu
z(0) =¢, z(T) =0

T
minimize  [jul|r, :=/ lu(t)|dt
0

subject to & = Ax + bu
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Main result - Failure Guarantees

Theorem

Let u* € R™ be a solution to £y problem, where V'€ R™*™ is such that V. 1., is invertible.

Then, u* is not a solution of {1 problem if there exists an i* € (m + 1 : n) with ] # 0 and
H‘/(_,llm)‘/(ﬂ*)nfl <1

o
Alignment property: ||V 8*[|co = u*T VT 8" = ||lu* |
s/—/
IB*
2]

B eIm(VT) =1Im (
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Tractable removal of "unhelpful" entries

Goal: Systematic removal of "unhelpful" entries.

Observation:

o lfb=1, € R™ A=diag(Ai,...,A\pn), \i>0and V = |b Ab ... ANb|, then

H (lm m—&-l:i)”l 1, W‘/v(Im )Vv(:,m-&-l:i)
is part of an impulse response.
= (Schur-)Stable A and large enough N, p; < 1 for i > I*.

@ Tractability by unimodality of p

pi — 1
1

| 1

— Simple binary search to find smallest I* with p;« < 1.
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Variation & Unimodality

@ Variation of a Vector: For p € R”

S(p) := # of sign changes (after deleting zeros)

le ®
g 0 O O
—1 | ® ® | | ®
1 2 3 4 ; 5 6 7
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@ Variation of a Vector: For p € R”

S(p) := # of sign changes (after deleting zeros)

le ®
g 0 O O
—1 | ® ® | | ®
1 2 3 4 ; 5 6 7

e Unimodality: Let (Ap); := piy+1 — pi, then p is unimodal if S(Ap) <1 and a possible
sign change in Ap occurs from positive to negative.

pi—1
T

| ?
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Variation & Unimodality

@ Variation of a Vector: For p € R”

S(p) := # of sign changes (after deleting zeros)

le ®
g 0 O O
—1 | ® ® | | ®
1 2 3 4 ; 5 6 7

e Unimodality: Let (Ap); := piy+1 — pi, then p is unimodal if S(Ap) <1 and a possible
sign change in Ap occurs from positive to negative.

pi—1
T

| ?

o k-Variation Bounding (VBy): A matrix X € R¥*" with k > n is k-variation bounding
if for every u € R™\ {0},

S(Xu) <k-—-1.
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Sign Consistency & Variation Bounding

For X €¢ R™*" m > n,

e m-Variation Bounding (VB,,): X is m-variation bounding if for every v € R™ \ {0},

S(Xu) <m—1.
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Sign Consistency & Variation Bounding

For X €¢ R™*" m > n,

e m-Variation Bounding (VB,,): X is m-variation bounding if for every v € R™ \ {0},

S(Xu) <m—1.

@ X is m-sign consistent if all its minors of order m share the same sign.

VB,, versus SC,,, (Lemma): For X € R™*" with m > n and rk(X) = n, X is m-variation
bounding (VB,,) if and only if it is m-sign consistent (SC,,).
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Main result - Unimodality

Theorem

Let V € R™™, m < n, be such that V € SCp, A((1},V)T) € VB, and det(V{. 1.m)) # 0.

Then, p € R™ defined by

P = Vit Vel k€ (1:0)

is unimodal .
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Proof outline
> By definition p(1.,) = 1., does this implies S(Ap(y.ny) < 1.
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Proof outline

> By definition p(1.,) = 1., does this implies S(Ap(y.ny) < 1.
> Define
W:=VT and Q:=WWqi,  Kpn.

v

Because W € SC,,, then from TP properties = Q(;;,41:n,:) is totally positive.
A1l W € VB,, =

v

S(AQ1y) =S(AW W, K 1y) <m — 1.
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The first m rows of AQ 1,,, contribute m — 2 sign changes
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Proof outline
> By definition p(1.,) = 1., does this implies S(Ap(y.ny) < 1.
> Define
W:=VT and Q:=WWqi,  Kpn.

» Because W € SC,,, then from TP properties = Q(p11:n,) is totally positive.
» A1] W € VB,, =

S(AQ1y) =S(AW W, K 1y) <m — 1.

» The first m rows of AQ 1,, contribute m — 2 sign changes

-2
2

> P(m+1n) = Q(m+1:n,:)v = S(Ap(m : TL)) <1l
» Finally, the single sign change in Ap(m : n) must be due to a negative entry, which implies
that p is unimodal.
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Corollary

Corollary

Let V. € R™*™ defined as in the previous theorem. Further, let T € R™*™ be invertible,
V =TV and

p(k) = 110V Loy Vet les

for all k > 1. Then, the sequence {p(k)}i>1 is unimodal.

@ In other words: mpulse response is realization independent

@ Applies to Hankel, Page, Toeplitz matrices, ...
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Log-Concavity

Theorem

Let A € R™*™ and b € R™ be such that A is diagonalizable and (A,b) controllable. Further,
let V =C(A,b) € SC,, and

g(z)(k) = Wgei, 1€ (1 : m)
p(k) == Wl1,
where
Ty —1
Wi, = Kmvv(:,l:m)‘/(%m“‘k)’ k=1

Then, the sequences {g(;)(k)}x>1 for each i € (1:m) and {p(k)}>1 are log-concave.
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Log-Concavity

Theorem

Let A € R™*™ and b € R™ be such that A is diagonalizable and (A,b) controllable. Further,
let V =C(A,b) € SC,, and

g(z)(k) = WkTe,-, 1€ (1 : m)
p(k) = Wy 1n,
where
Ty, —1
Wi, = Km‘/(:,l:m)‘/(%m“‘k)’ k=1

Then, the sequences {g(;)(k)}x>1 for each i € (1:m) and {p(k)}>1 are log-concave.

Hidden Gem: The transformation induced by W}, yields the companion matrix of A.
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Characteristic Polynomial

Theorem

Let A € R™*™ have characteristic polynomial

det(sI — A) = ™ + Am_18™ 1 + -+ ags + ao,
m—1
with Z lai| <1, and let b € R™ be such that the pair (A,b) is controllable. Then, for the
i=0
controllability matrix V.= C(A, b) it holds

HV(_,llm) ‘/(:,m—i-k)Hgl <1 for all k > 0.
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Sparse minimization (G)

V=[bAb ... AN [ [u(N-1) ... u(o)}T

-10°
12] i
Tosth |
g
ne i
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Index Index
A:diag([o.gs 0.97 0.96 0.95 0.94}) Azdiag([o.és 0.7 0.6 0.5 0.4])
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Concluding remarks

@ Deterministic framework that provides failure guarantees for basis pursuit for special
matrix structures.

Complements (conservative) success guarantees

@ New avenue for study of sparse/low-rank optimization problems

Future work: sparsity in terms of singular values and rank minimization.
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