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INTRODUCTION

Distributed coordination schemes have many practical applications:

+ UAVs B
- Surveillance and reconnaissance N
- Mapping . N
- Aerial transportation + i
- Mobile communication networks = i

- Coordinated maneuvering

+ Spacecraft

- Interferometric arrays
- Constellations for sensing




OBJECTIVES

Given a team of agents able to sense/communicate only with neighboring agents:

Formation Acquisition

Formation Maneuvering
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OBJECTIVES

Given a team of agents able to sense/communicate only with neighboring agents:

Formation Acquisition

« Overview of classic distance constrained formation , /‘\E

Control

- Introduction of a novel control strategy for
symmetry constrained formations

Formation Maneuvering

Design a control strategy that enables symmetry- ) 13
constrained formations to maneuver through space oL
as a cohesive rigid body




FORMATION CONTROL - AGENT CONFIGURATION

- Ateam of n agents interact according
to an information exchange graph
g=(0.98)
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FORMATION CONTROL - AGENT CONFIGURATION

- A team of n agents interact according - The graph can be embedded in
to an information exchange graph Euclidean space R as a framework
G =V~ (G, p). The position of the i-th agent is

given by p;(t) € R?
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FORMATION CONTROL - AGENT CONFIGURATION

- By implementing distance
constraints, the desired formation
can be defined as a framework (G, p*)



FORMATION CONTROL - AGENT CONFIGURATION

- By implementing distance - Rotations and translations of this
constraints, the desired formation configuration result in some
can be defined as a framework (G, p*) congruent framework (G, q*) that also

satisfies the constraints
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FORMATION CONTROL - CONSTRAINTS

+ The desired formation is characterized by a set of M constraints, encoded in the
function F': R*® — RM, and a configuration p* satisfying the constraints
» The set of all feasible formations is

F(p) ={p e R™| Fp) = F(p")}

Formation Control Objective
For an ensemble of n agents with dynamics

pi = U,

with p;(f) € R9, an information exchange graph G = (V, &), and formation constraint
function F: R™ — RM, design a distributed control law for each agent i € {1,..., n}
such that the set nd | -

F(p) = {p e R™| F(p) = F(p*)},

is asymptotically stable.



DISTANCE CONSTRAINED FORMATION CONTROL

Consider the potential function

1 ; 2
Fi(p) = 7 > (Ilp() = pi(0* = (d5)*)
ijel
and assume the desired distances d;; correspond to a feasible formation. Then the

gradient dynamical system

bi ===V Fy(p) = D (I = pill* = (d)°) (0 — 1)

9F(p) = 0.

asymptotically converges to the critical points of the potential function, i.e., B




DISTANCE CONSTRAINED FORMATION CONTROL

Consider the potential function

1 ; 2
Fi(p) = 7 > (Ilp() = pi(0* = (d5)*)
ijel
and assume the desired distances d;; correspond to a feasible formation. Then the

gradient dynamical system

bi ===V Fy(p) = D (I = pill* = (d)°) (0 — 1)

9F(p) = 0.

asymptotically converges to the critical points of the potential function, i.e., B

How do we define shapes ?




FORMATION CONTROL & RIGIDITY THEORY

Rigidity Theory allows us to determine:

« the number of constraints required to ensure the desired shape
» how the constraints should be distributed on the network



FORMATION CONTROL & RIGIDITY THEORY

allows us to determine:

« the number of constraints required to ensure the desired shape
» how the constraints should be distributed on the network

OF ) )
R(p) = - (‘);p) = diag(p; — Pi)(ET ® Iy)

The rigidity matrix helps us determine whether a framework (G, p) is infinitesimally rigid.

Eis the incidence matrix of G

Infinitesimal rigidity ensures that the shape is uniquely determined in a local sense, except
from translations and rotations

A framework is if and only if rkR(p) = 2n — 3 in R?



FORMATION CONTROL & RIGIDITY THEORY

The state-space representation of the distance constrained formation control:

(2= =V,Fylp) = —R"(p) (R(p)p— (4')?) ]

[Krick 2009]
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[I'I{R(p) =2|V|-3and|E]| =2|V| - 3} (in R2)
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FORMATION CONTROL & RIGIDITY THEORY

The state-space representation of the distance constrained formation control:

[p = =V, Fip) = —R"(p) (R(p)p — (d*)g)J

[Krick 2009]

« Local convergence to the desired formation shape is guaranteed if and only if the
framework is infinitesimally rigid

+ This leads to a minimal architectural requirement that ensures convergence to the
correct formation. Equivalent to:

[I'I{R(p) =2|V|-3and|E]| =2|V| - 3} (in R2)

Q: Can the problem be solved with fewer constraints?

A: Yes, by leveraging the inherent symmetry in certain formations!




EXAMPLE

Rotation symmetry

+ The "classic” distance based + Incorporating symmetry
formation control strategy constraints lowers the number
requires at least 21 edges of required edges to 11

10



SYMMETRY AND GRAPH AUTOMORPHISMS

Automorphisms encode graph symmetries
Graph Automorphism

An automorphism of the graph G = (V, £) is a permutation ) : VV — V of its vertex set
such that
{v;,v;} € € & {(v;),¥(v;)} € €

Identity: clock-wise 90° rotation: reflection:

. 1 2 3 4 (12 3 4 (12 3 4
Tl o2 3 4 =12 3 41 2=\ 2 1 4 3

1



AUTOMORPHISM GROUPS

+ Additional permutations can be found for the given

graph considering all possible reflections and : e |
rotations |

+ The set of all automorphisms of G form a group - Aut(G)
- Aut(G) = {Id, ¢, 12, ...}

« For any subgroup I' C Aut(G), we say that G is ['-symmetric, which define specific
symmetries in G

12



['-SYMMETRIC FRAMEWORKS

Certain nodes are equivalent to each other and can be grouped together.

consider I' = {Id, ¢, } (reflection about mirror S)

» Vertex Orbit:
I =% = {12}, Ty= Di=+ }

+ Edge Orbit:
F(fl = {' }* rli:s :{ } F‘«".) = Fl’x = {()'2'@'1}




['-SYMMETRIC FRAMEWORKS

Certain nodes are equivalent to each other and can be grouped together.

consider I' = {Id, ¢, } (reflection about mirror S)

+ Vertex Orbit:
Iy =T ={1,2}, T3 =Ty = {3,4}
vertices inside a vertex orbit are equivalent
representative vertex set: V, = {1, 1}

+ Edge Orbit:
Le, ={e1}, Tey = {2}, Te, =T, = {€2, €4}
edges inside an edge orbit are equivalent
representative edge set: & = {ey, ¢, es}




7(I")~SYMMETRIC FRAMEWORKS

Graph symmetries can be realized in Euclidean space by assigning to each element of I"
an orthogonal matrix 7 representing a point group isometry.

Example

« Consider I' = {Id, ¢, } (Reflection about mirror S)
(—a, b)

-1 0
* Isometr Do) = Ts = :
Y 7(12) = 7, [ 0 1]

_ -1 0| |—a _|a]
TefL= (0 | bl |b =9




7(I")-SYMMETRIC FRAMEWORKS

The symmetric relationship of 7(I")-symmetric
frameworks is only satisfied for special configurations

15



7(I")-SYMMETRIC FRAMEWORKS

The symmetric relationship of 7(I")-symmetric
frameworks is only satisfied for special configurations

Isometries of the desired configuration coincide with
symmetries of the automorphisms of G

15



ORBIT RIGIDITY MATRIX

(—a,b) 5 (a, b) a 0 (2a 0 (0 0) 0 0)

: (0 b—e¢) (0 0) (0 0 0 ¢—1b)
(0 0) (0 b—¢c) (0 c—b) (0 0)
(0 0 (0 0

R(p) =

Due to symmetry, certain rows and columns of the rigidity matrix are

(—a,e) (e.c)  redundant.
Orbit Rigidity Matrix ©(G, p) [Schulze 2011]
(2p1 — Tep1 — 7 1p1) " (0 0 2a 0 (0 0)
O(Go,p) = (pr — pa)” (pa —p1)” = (=0 (c—b)
(0 0) (2ps — Topa — 7" 'pa)” (0 0)

Describes the 7(I')-symmetric infinitesimal rigidity properties of 7(I")-symmetric frameworks.

The introduction of the orbit rigidity matrix suggests a further way to exploit symmetries in
formation control:

» Only representative edges are required to maintain distances
« Symmetries within vertex orbits have no need for distance constraints 16



A GRADIENT APPROACH

Define a symmetric formation potential
Fy(p(t)) = Fe(p(t)) + Fs(p(1))
where

+ The representative edge formation potential:

Folo() = 3 3 (Inih) — r)ms I — (d5y)?)”

+ The symmetry potential:

1 9
Fsp®) =53 > () = 7(ru)pu(d)?
& 111?6‘5
[zelazo 25]

17



FORCED SYMMETRIC FORMATION CONTROL

el lal ’1. . .
The states are defined as p(t) = Pp(t) = [p({(t) pf (t)} , for some permutation matrix P.

* po(t) - the restriction of the configuration vector p(t) to agents in the representative vertex
set Wy

« ps(t) - The remaining agents

Propose the gradient control
u(t) = —V Fy(p(1))

The dynamics in state-space form become

[mm]_ =076, 0(0) (OGo po ()~ & )| _ o [pum]
() 0 ps(t)

[Zelazo 25]



FORCED SYMMETRIC FORMATION CONTROL

el lal ’1. . .
The states are defined as p(t) = Pp(t) = [p({(t) pf (t)} , for some permutation matrix P.

* po(t) - the restriction of the configuration vector p(t) to agents in the representative vertex
set Wy

« ps(t) - The remaining agents

Propose the gradient control
u(t) = —V Fy(p(1))

The dynamics in state-space form become

[mm]_ =076, 0(0) (OGo po ()~ & )| _ o [pum]
() 0 ps(t)

[Zelazo 25]

Compare to

[j) _ —RT(P) (I{(p)p — ((1*)2)J




FORCED SYMMETRIC FORMATION

Example

« 7(T")-symmetric framework
with 27 /6 rotational symmetry

19



FORCED SYMMETRIC FORMATION

Example

« 7(T")-symmetric framework « The "classic” distance based
with 27 /6 rotational symmetry formation control strategy
requires at least 21 edges

19



FORCED SYMMETRIC FORMATION

Example

+ The forced symmetric
formation control strategy
requires only 11 edges

10 15

20



FORMATION MANEUVERING

« Formation maneuvering aims to satisfy the
formation control objective while
simultaneously moving the formation through

space as a rigid body

21



FORMATION MANEUVERING

« Formation maneuvering aims to satisfy the
formation control objective while
simultaneously moving the formation through
space as a rigid body

« Secondary objective:

lim ||p:(t) — vi(t)|]] =0
T—00

where v; € R? is the desired rigid body velocity
for each agent

21



FORMATION MANEUVERING

« Formation maneuvering aims to satisfy the
formation control objective while
simultaneously moving the formation through
space as a rigid body

« Secondary objective:

Tim [[i(8) = vi(8)]| = 0
where v; € R? is the desired rigid body velocity
for each agent

+ 7(I")-symmetric frameworks by definition have point-group symmetries defined
with respect to some fixed inertial point

21



FORMATION MANEUVERING

« Formation maneuvering aims to satisfy the
formation control objective while
simultaneously moving the formation through
space as a rigid body

« Secondary objective:

Tim [[i(8) = vi(8)]| = 0
where v; € R? is the desired rigid body velocity
for each agent

+ 7(I")-symmetric frameworks by definition have point-group symmetries defined
with respect to some fixed inertial point

Idea: Introduce a trajectory defined by a virtual state ({) € R and a time-varying
rotation matrix R(¢) € SO(d).

21




CENTRALIZED APPROACH

Proposition
* The shifted state
T s T
e(t) = [c({(t) ({f’(t)] =Plp(t) 18

allows the agents to agree on a different origin defined by r(t).

- For an angular velocity w(t) € R?, describing the rotational dynamics of the
trajectory, the time-varying rotation matrix R(¢) satisfies R(t) = R(t)w(t)", and the
corresponding isometry is defined by the similarity transformation:

74 (t) = R(t)T(7)R ’

22



CENTRALIZED APPROACH

Proposition
+ The shifted state
-
o(t) = [c?(f) ({}1'(1)] =Pp(t) -1

allows the agents to agree on a different origin defined by r(t).

- For an angular velocity w(t) € R?, describing the rotational dynamics of the
trajectory, the time-varying rotation matrix R(¢) satisfies R(t) = R(t)w(t)", and the
corresponding isometry is defined by the similarity transformation:

() = R()T(7)R(H)T

+ The desired configuration rotates about an axis & that passes
through both the shifter formation’s centroid and the origin

22



CENTRALIZED APPROACH - CONTROL

Define:

« Formation Control

—OT(Go, colt), 7 ()| O(Go, co(t), Neolt) —d2 )(1
I.',(t) _ (g(l )( (g(l ) (]) = P(J( (4 )PT ]
0
» Virtual trajectory dynamics
T

Preposition

The modified control
T
[ho(t) p(H)] = u(t) = wa(t) + v (1)

solves the formation maneuvering problem, ensuring (local) exponential stability to
the desired symmetric formation shape.

23



CENTRALIZED APPROACH - PROOF SKETCH

Define the error system

t
Q7 (1)) e(t

where a(t) and g({) represent the distance and symmetry errors, respectively.

(gu !“u() ()) ()d%]
Consider the Lyapunov candidate function

Its time derivative satisfies
[O(Q(:s Cu(i))
ET(T)PT

Since V(¢) is negative definite in a neighborhood of the equilibrium, the error &()
exponential converges to zero. Consequently, u(t) — v,,(f) as e — 0.

Vi) =et)"

ﬂ]a@gnmmﬁ a <0,

24



CENTRALIZED APPROACH - EXAMPLE

Trajectory generated by:
Mg:@

mm:-b ﬂT

log([le(t)])

10

10°

, T
5 3sin(§7rt)] . ni

I

10

25



CENTRALIZED APPROACH - EXAMPLE

+ "Classic” distance-based
formation control needs a
global reference agent and at
least 21 edges

+ The forced symmetric
formation control strategy
requires only 7 edges

26



CENTRALIZED APPROACH - EXAMPLE

Trajectory generated by:
-
r(t) = [:; cos(mt) 2 sin(mt) ()] 3

o 0 ﬂT

log(|le(t)]])

27



DISTRIBUTED APPROACH - FLOCKING

A single agent is subjected to a reference velocity input v,.s(¢).

The modified control strategy including a reference model takes the form:

po(t) _ —07(Go, co(1)) (O(gﬂ: co(t))co(t) — d%) co(?)
pAt) 0 ¢r(1)

The trajectory is computed distributedly based on the consensus protocol:
{#- = —kpL(G)T — ki€ + nB® vper(1)
¢

] — PQPT +

where:
L(G) € R™" is the Laplacian matrix of the information exchange graph G
v.r € R is the reference velocity input

B ¢ R" is a standard base vector denoting which agent is subjected to v,..(t)
28



DISTRIBUTED APPROACH - FLOCKING EXAMPLE

Trajectory generated by:
. T
< 3) = [5+2t 242 +3] :
.
> 3) = [10 U} .

r(0) = [w ’IU}T

=

Log(||e(t)]))

29



CONCLUDING REMARKS

Summary

+ Rigid body translations and rotations can be executed while preserving point group
symmetries in symmetry constrained formations

+ A global velocity reference command can be applied to a single agent
Future Work

+ Extend the distributed maneuvering approach to formations that undergo rotations
+ Extend the approach to multi-agent systems with double integrator dynamics
« Investigate bearing rigidity extensions under symmetry constraints

« Explore distributed symmetry agreement to autonomously agree on a global
symmetric configuration

30



Questions? }
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