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Navigation with Artificial Potential Fields

Path Planning
 Find a path between the start 

and target.

 Path must be safe – avoid 
obstacle collision.

Control
 Tracking the planned path.

 Control inputs must comply 
with the system constraints.

Artificial Potential Fields

 Encompasses complete 
information about the 
obstacle-free space.

 Used to form a 
feedback controller.

Robot navigation using artificial potential fields unifies the path planning 
problem with the feedback controller design.
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Navigation Functions

Let 𝑞் be a target point in the 
obstacle free space 𝒲. A 𝒞ଶ-smooth 
function𝜑 ∶ 𝒲 → 0,1  navigation 
function if

– φ polar with unique minimum at 
target

– All other critical points of φ are non-
degenerate saddle points

– φ admissible with uniform maximal 
value on boundary of 𝒲

2

3
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Navigation Function Construction

𝜑 𝑞 =
𝛾(𝑞)

𝛾 𝑞 + 𝛽 𝑞
ଵ


Using tuning parameter 𝑘 the navigation function is

Distance to Target
Obstacle Product

𝛽 𝑞 = ∏𝛽(𝑞)
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Tuned Navigation Functions

TargetTarget

𝑘 = 2 𝑘 = 8
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Navigation Function Classical Control Law

Classical control law : 𝑢 𝑡 = −∇𝜑 𝑥 − 𝐶�̇�            𝐶 ≻ 0

Asymptotic convergence to target using total mechanical energy as          
a Lyapunov function 𝑉(𝑥, �̇�) :

𝑉 𝑥, �̇� = 𝜑 𝑥 +
1

2
𝑚 �̇�

ଶ

𝜕𝑉

𝜕𝑡
= ∇𝜑 ⋅ �̇� + 𝑚 ⋅ �̇� ⋅ �̈� = −�̇�்𝐶�̇� ≤ 0

LaSalle’s invariance principle: robot trajectories converge to target from 
almost all initial points in 𝒲 (zero speed at target)
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Bounded Control Input Problem

Construct feedback control law that guides robot system 𝑚�̈� 𝑡 = 𝑢(𝑡)
to the target while avoiding collision with known obstacles under 
control input bound 𝑢 ≤ 𝐹௫.

Ensure bounded control inputs using robot navigation functions

Preserve the navigation function collision safety and arrival to target

Problem Statement :
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Bounded Control Law

Bounded control navigation function law 
𝑢 𝑡 = −ℎ ⋅ ∇𝜑 − 𝐹் ⋅ ∇𝜑 ⋅ 𝑣ො ∇𝜑 − 𝐹ே ⋅ ∇𝜑 ୄ ⋅ 𝑣ො ∇𝜑 ୄ

Based on a conservative rectangular bound 2𝐹்
ଶ + 𝐹ே ≤ 𝐹௫.

𝑣ො denotes robot velocity direction - 𝑣ො =
௫̇

| ௫̇ |

ℎ > 0 is a scaling factor – used to enforce control input bound.

Using the modified Lyapunov function

𝑉 𝑥, �̇� = ℎ ⋅ 𝜑 𝑥 +
1

2
𝑚 �̇�

ଶ

Ravina, Rimon & Loizou, “Bounded control mobile robot navigation functions”, MED 2024
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Gradient Scaling Caveat

Gradient scaling by ℎ requires global 
information about the environment:

ℎ =
𝐹்

max
௫∈𝒲

∇𝜑

Computation of ℎ currently done 
numerically over the environment

Adaptive on-line scaling law?

Target

Gradient Magnitude | ∇𝜑 |
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Simulation Results – Classical Law Vs Bounded Law

Classical law trajectory bounded control law trajectory
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Navigation Function Based Time Optimal Control

Construct feedback control law that guides robot system 𝑚�̈� 𝑡 = 𝑢(𝑡)
to the target while avoiding collision with known obstacles under 
control input bound 𝑢 ≤ 𝐹௫ in minimal navigation time 𝑡.

Problem Statement :

Solution Approaches

Open-loop
Closed-loop
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Time Optimal Navigation – Open Loop

Considers the optimal control problem 
min

௫,௬,௨,௧

𝑡  𝑠𝑢𝑏𝑗𝑒𝑡 𝑡𝑜:

�̈�
�̈�

=
𝑢ଵ

𝑢ଶ

 𝜑 𝑥, 𝑦 < 1 
𝑢ଵ ≤ 𝐹ଵ, 𝑢ଶ ≤ 𝐹ଶ

𝑥(0)
𝑦(0)

=
𝑥ௌ

𝑦ௌ
   

𝑥(𝑡)

𝑦(𝑡)
=

𝑥ௌ

𝑦ௌ

The uniform maximal height of 𝜑 is used as a single safety constraint.
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Simulation Results - Time Optimal Navigation

Optimal control constructed by the primitives ℬାିℬିି𝒮ଶ
ି𝒮ଶ

ା.
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Simulation Results - Time Optimal Navigation

Resulting optimal trajectory reminds of desire paths!
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Closed Loop Pseudo-Time Optimal Navigation

Problem: 
– Minimum time solution requires global solution – invalid for real-time.

Suggested Solution: 
– Choose virtual target that minimizes the navigation function value at the end 

of the prediction time 𝑇.  

min
௭ೕ,௨ೕ

𝜑 𝑥ே, 𝑦ே  𝑠𝑢𝑏𝑗𝑒𝑡 𝑡𝑜:

𝑧ାଵ = 𝐼 + ∆𝑡𝐴 𝑧 + ∆𝑡𝐵𝑢

 𝜑 𝑥, 𝑦 < 1 

𝑢ଵ ≤ 𝐹ଵ, 𝑢ଶ ≤ 𝐹ଶ

𝑧ଵ = 𝑧௦௨ௗ

    
1 ≤ 𝑗 ≤ 𝑁 − 1

𝑇 = 𝑁∆𝑡
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Closed Loop Pseudo-Time Optimal Navigation

Closed loop implementation of the solution of (1) using MPC.

 (1) requires global solution – an intermediate problem is solved.

A virtual target 𝑞், is chosen to minimize 𝜑 𝑞், . 

൞

min 𝑡,

𝜑 𝑞 < 1

𝑞 𝑡, = 𝑞்,

ቐ
min 𝜑 𝑞், 𝑇

𝑇 = 𝑁∆𝑡

𝑞்,
Execute 𝑢ଵ

∗ for ∆𝑡
𝑢ଵ,ଶ,…,ே

∗

Measure 𝑞
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Closed Loop Pseudo-Time Optimal Navigation



Solve time 
�̅�𝒔𝒐𝒍𝒗𝒆 [𝒔]

Navigation 
Time 𝒕𝒇 [𝒔]

Prediction 
Steps 𝑵

0.0767.712

0.1747.216

0.1866.520

0.2286.624

0.2466.328

-5.4Time-optimal

-14.9Bounded
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Simulation Results – MPC Navigation
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Simulation Results – MPC Navigation
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Simulation Results – MPC Navigation
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Simulation Results – MPC Navigation
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Simulation Results – MPC Navigation
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Simulation Results – MPC Navigation
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MPC Navigation Vs. Kinodynamic Planner

𝑡 = 6.3[𝑠]𝑡 = 7.2 𝑠 ଵ

1SST* Planner from OMPL by Sucan et al. ompl.kavrakilab.org



 Integrate newer and faster solvers to increase prediction horizon.

Replace double-integrator model with non-holonomic vehicle models.
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Future Research Goals

�̈�
�̈�

=
𝑢ଵ

𝑢ଶ
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Thank You!

Questions?


