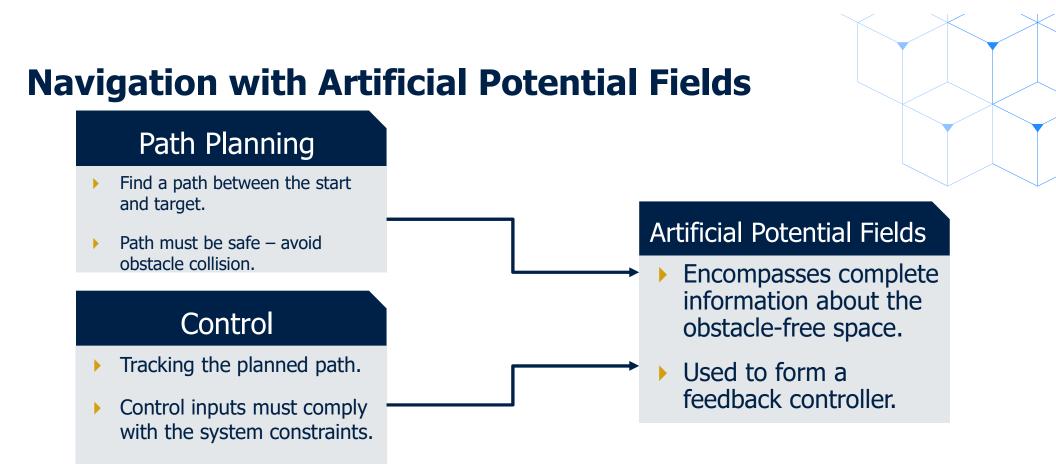


# Time Optimal Robot Navigation with Navigation Functions

Leeor A. Ravina / GSC'25

Supervisor: Elon D. Rimon

Faculty of Mechanical Engineering, Technion

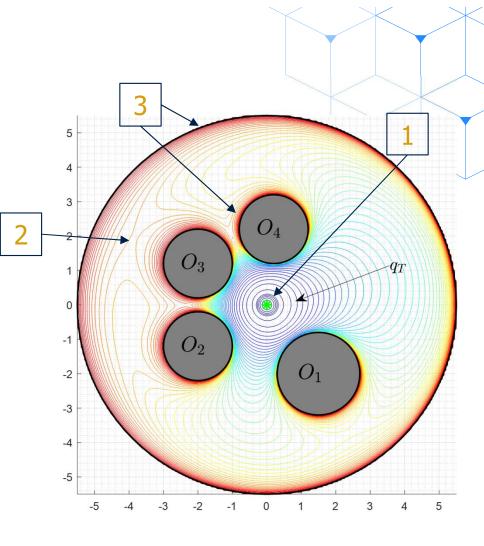


 Robot navigation using artificial potential fields unifies the path planning problem with the feedback controller design.

Israel Institute of Technology

#### **Navigation Functions**

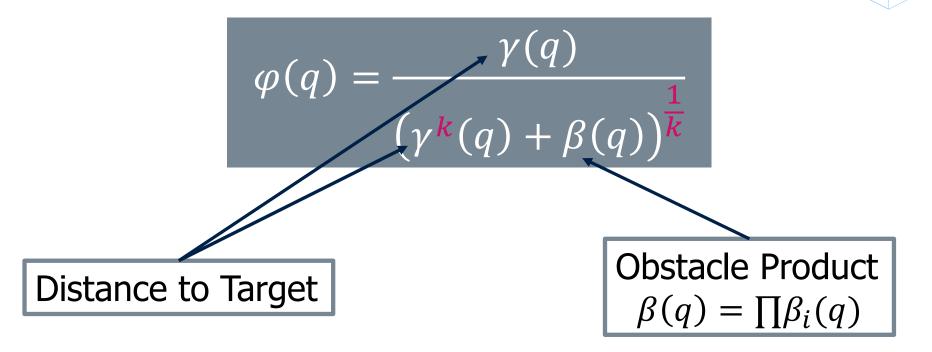
- Let  $q_T$  be a target point in the obstacle free space  $\mathcal{W}$ . A  $C^2$ -smooth function $\varphi : \mathcal{W} \rightarrow [0,1]$  *navigation function* if
  - φ polar with unique minimum at target
  - All other critical points of  $\phi$  are nondegenerate saddle points
  - $\phi$  admissible with uniform maximal value on boundary of  $\mathcal{W}$



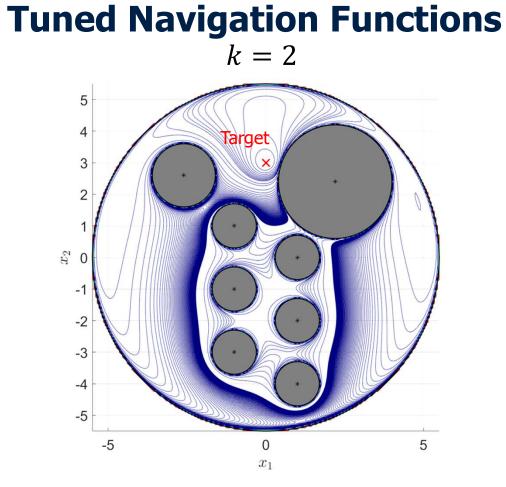


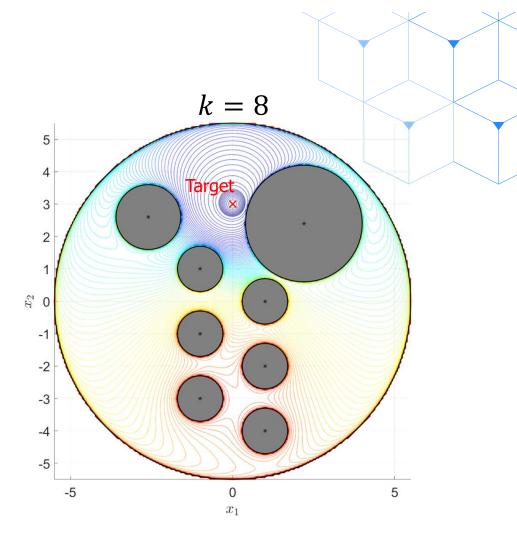
### **Navigation Function Construction**

Using tuning parameter k the navigation function is











### **Navigation Function Classical Control Law**

- Classical control law :  $u(t) = -\nabla \varphi(x) C\dot{x}$  C > 0
- Asymptotic convergence to target using total mechanical energy as a Lyapunov function  $V(x, \dot{x})$ :

$$V(x, \dot{x}) = \varphi(x) + \frac{1}{2}m ||\dot{x}||^{2}$$
$$\frac{\partial V}{\partial t} = \nabla \varphi \cdot \dot{x} + m \cdot (\dot{x} \cdot \ddot{x}) = -\dot{x}^{T} C \dot{x} \le 0$$

 LaSalle's invariance principle: robot trajectories converge to target from almost all initial points in *W* (zero speed at target)



### **Bounded Control Input Problem**

- Ensure bounded control inputs using robot navigation functions
- Preserve the navigation function collision safety and arrival to target
- Problem Statement :

Construct feedback control law that guides robot system  $m\ddot{x}(t) = u(t)$  to the target while avoiding collision with known obstacles under control input bound  $||u|| \le F_{max}$ .



#### **Bounded Control Law**

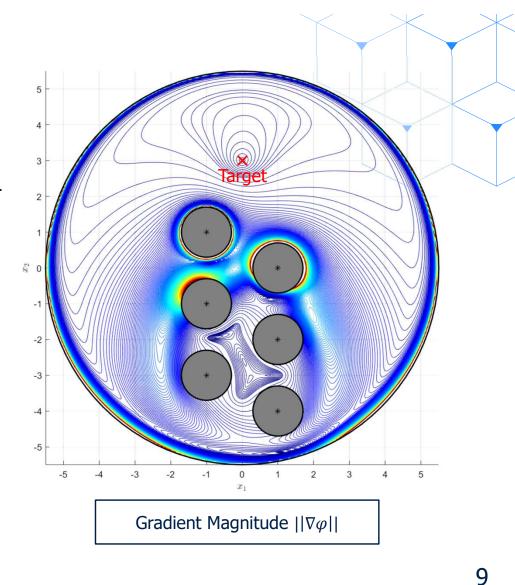
- Bounded control navigation function law  $u(t) = -\mathbf{h} \cdot \nabla \varphi - F_T \cdot (\widehat{\nabla \varphi} \cdot \widehat{v}) \widehat{\nabla \varphi} - F_N \cdot (\widehat{\nabla \varphi^{\perp}} \cdot \widehat{v}) \widehat{\nabla \varphi^{\perp}}$
- Based on a conservative rectangular bound  $(2F_T)^2 + F_N \leq F_{max}$ .
- $\hat{v}$  denotes robot velocity direction  $\hat{v} = \frac{\dot{x}}{||\dot{x}||}$
- h > 0 is a scaling factor used to enforce control input bound.
- Using the modified Lyapunov function

$$V(x, \dot{x}) = \mathbf{h} \cdot \varphi(x) + \frac{1}{2} m \left| |\dot{x}| \right|^2$$



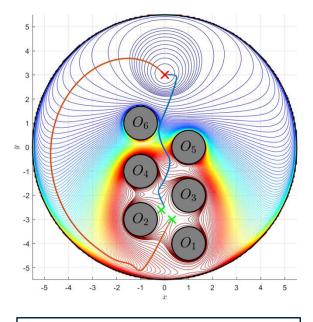
#### **Gradient Scaling Caveat**

- Gradient scaling by *h* requires <u>global</u> information about the environment:  $h = \frac{F_T}{\max_{r \in \mathcal{W}} ||\nabla \varphi||}$
- Computation of *h* currently done numerically over the environment
- Adaptive on-line scaling law?

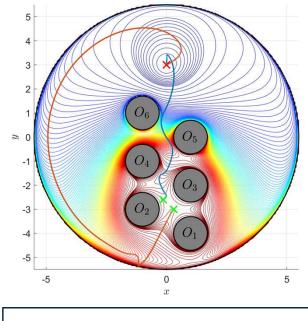




#### **Simulation Results – Classical Law Vs Bounded Law**



Classical law trajectory



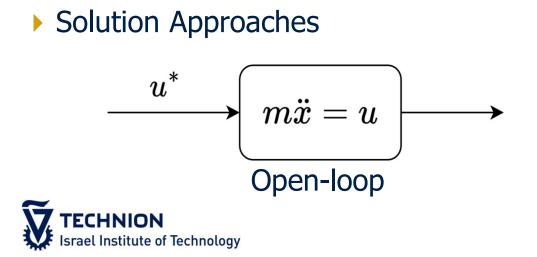
bounded control law trajectory

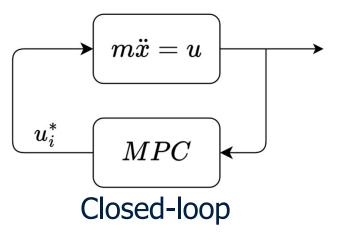


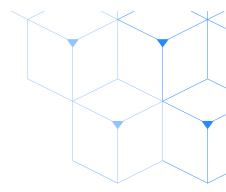
#### **Navigation Function Based Time Optimal Control**

Problem Statement :

Construct feedback control law that guides robot system  $m\ddot{x}(t) = u(t)$  to the target while avoiding collision with known obstacles under control input bound  $||u|| \leq F_{max}$  in minimal navigation time  $t_f$ .







### **Time Optimal Navigation – Open Loop**

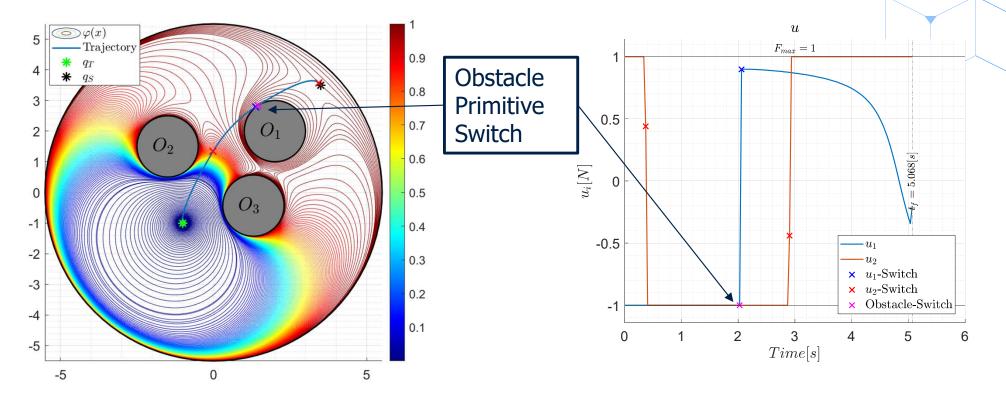
Considers the optimal control problem

 $\begin{cases} \min_{x,y,u,t_f} t_f \text{ subjet to:} \\ \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ \varphi(x,y) < 1 \\ |u_1| \le F_1, |u_2| \le F_2 \\ \begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} x_S \\ y_S \end{bmatrix} \begin{bmatrix} x(t_f) \\ y(t_f) \end{bmatrix} = \begin{bmatrix} x_S \\ y_S \end{bmatrix}$ 

> The uniform maximal height of  $\varphi$  is used as a **single safety constraint.** 

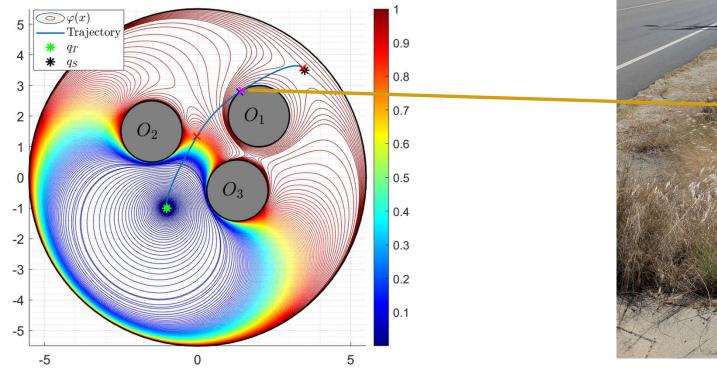


#### **Simulation Results - Time Optimal Navigation**



• Optimal control constructed by the primitives  $\mathcal{B}^{+-}\mathcal{B}^{--}\mathcal{S}_2^{-}\mathcal{S}_2^{+}$ . • **TECHNION** Israel Institute of Technology

#### **Simulation Results - Time Optimal Navigation**



Resulting optimal trajectory reminds of desire paths!

### **Closed Loop Pseudo-Time Optimal Navigation**

#### Problem:

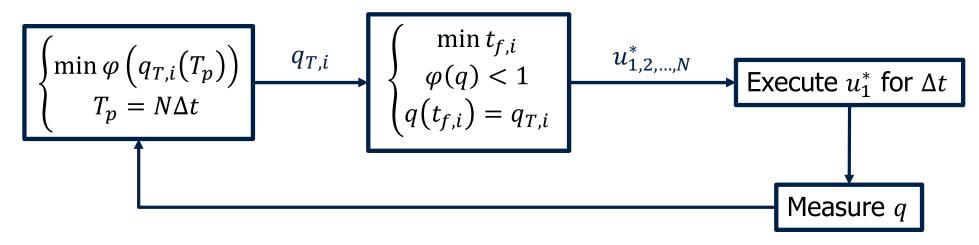
- Minimum time solution requires global solution invalid for real-time.
- Suggested Solution:
  - Choose virtual target that minimizes the navigation function value at the end of the prediction time  $T_p$ .

$$\begin{pmatrix} \min_{z_j, u_j} \varphi(x_N, y_N) \text{ subjet to:} \\ z_{j+1} = (I + \Delta tA)z_j + \Delta tBu_j & 1 \le j \le N - 1 \\ \varphi(x_j, y_j) < 1 & T_p = N\Delta t \\ |u_1| \le F_1, |u_2| \le F_2 \\ z_1 = z_{measured} \end{cases}$$



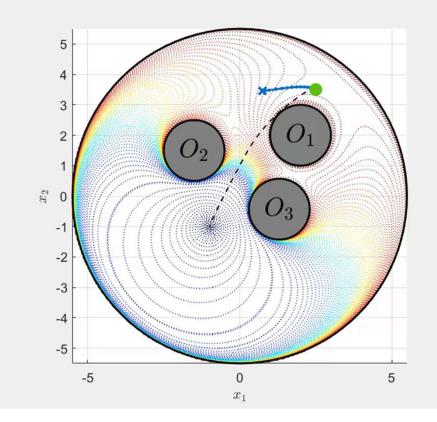
#### **Closed Loop Pseudo-Time Optimal Navigation**

- Closed loop implementation of the solution of (1) using MPC.
- (1) requires global solution an intermediate problem is solved.
- A virtual target  $q_{T,i}$  is chosen to minimize  $\varphi(q_{T,i})$ .





#### **Closed Loop Pseudo-Time Optimal Navigation**

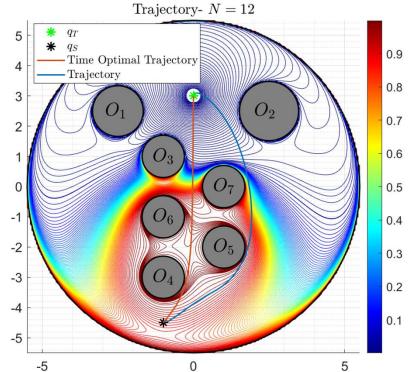




#### Navigation Solve time Prediction $q_T$ 5 $q_S$ \* Time $t_f[s]$ Steps N $\overline{t}_{solve}[s]$ 4 12 0.076 3 7.7 2 0.174 16 72 1

**Simulation Results – MPC Navigation** 

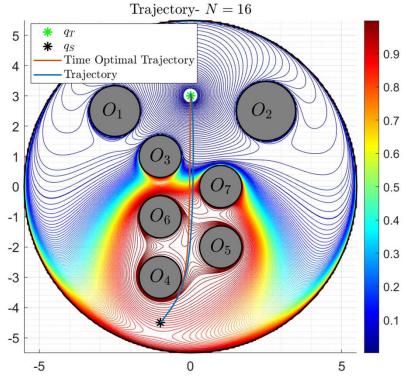
| 10           | / • 2 |       |
|--------------|-------|-------|
| 20           | 6.5   | 0.186 |
| 24           | 6.6   | 0.228 |
| 28           | 6.3   | 0.246 |
| Time-optimal | 5.4   | -     |
| Bounded      | 14.9  | -     |





#### Navigation Solve time Prediction 5 \* Time $t_f[s]$ Steps N $\overline{t}_{solve}[s]$ 4 12 0.076 3 7.7 2 16 7.2 0.174 1 20 6.5 0.186 0 -1 6.6 24 0.228 -2 28 6.3 0.246 -3 -4 **Time-optimal** 5.4 -5 Bounded 14.9

**Simulation Results – MPC Navigation** 





#### Trajectory-N = 20Navigation Solve time $q_T$ 5 $q_S$ \* Time $t_f[s]$ $\overline{t}_{solve}[s]$ Time Optimal Trajectory 4 Trajectory 0.076 3 $O_2$ $O_1$ 2 0.174 $O_3$ 1 0.186 0 $O_6$ -1 0.228 -2 0.246 -3 -4 -5 -5 0

#### **Simulation Results – MPC Navigation**

7.7

7.2

6.5

6.6

6.3

5.4

14.9



Prediction

Steps N

12

16

20

24

28

**Time-optimal** 

Bounded

20

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

#### Trajectory-N = 24 $q_T$ 5 $q_S$ \* 0.9 - Time Optimal Trajectory 4 Trajectory 0.8 3 $O_2$ $O_1$ 0.7 2 $O_3$ 0.6 1 0 0.5 $O_6$ -1 0.4 -2 ()0.3 -3 0.2 -4 0.1 -5 -5 0 5

#### **Simulation Results – MPC Navigation**

| Prediction<br>Steps N | Navigation<br>Time $t_f[s]$ | Solve time $\bar{t}_{solve} [s]$ |
|-----------------------|-----------------------------|----------------------------------|
| 12                    | 7.7                         | 0.076                            |
| 16                    | 7.2                         | 0.174                            |
| 20                    | 6.5                         | 0.186                            |
| 24                    | 6.6                         | 0.228                            |
| 28                    | 6.3                         | 0.246                            |
| Time-optimal          | 5.4                         | -                                |
| Bounded               | 14.9                        | -                                |

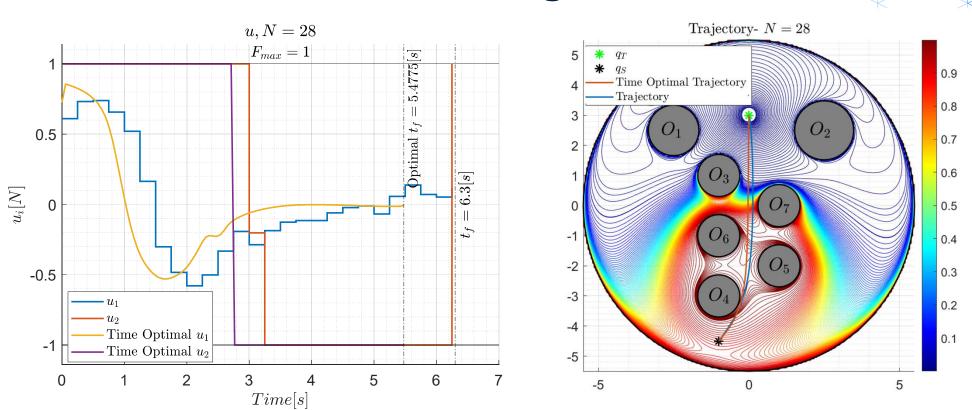


#### Trajectory-N = 285 $q_T$ **\*** *qs* 0.9 - Time Optimal Trajectory 4 - Trajectory 0.8 3 $O_2$ $O_1$ 0.7 2 $O_3$ 0.6 1 0 0.5 $O_6$ -1 0.4 -2 ()0.3 -3 0.2 -4 0.1 -5 -5 0 5

#### **Simulation Results – MPC Navigation**

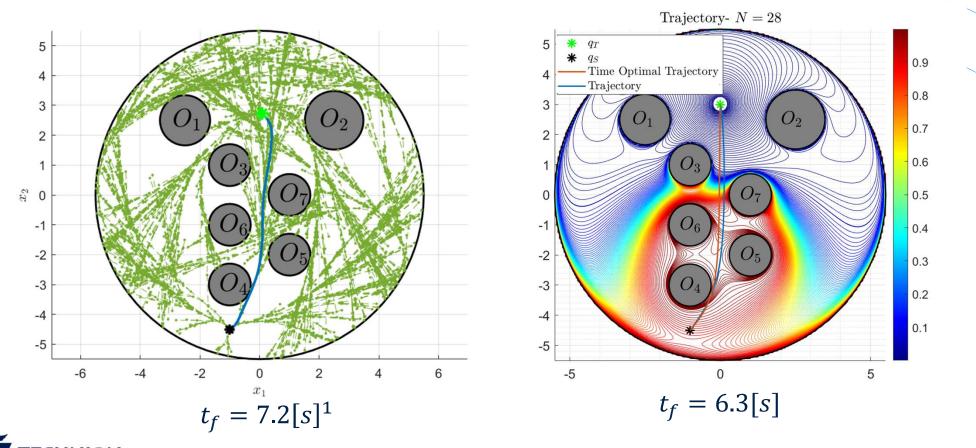
| Prediction<br>Steps N | Navigation<br>Time $t_f[s]$ | Solve time $\bar{t}_{solve} [s]$ |
|-----------------------|-----------------------------|----------------------------------|
| 12                    | 7.7                         | 0.076                            |
| 16                    | 7.2                         | 0.174                            |
| 20                    | 6.5                         | 0.186                            |
| 24                    | 6.6                         | 0.228                            |
| 28                    | 6.3                         | 0.246                            |
| Time-optimal          | 5.4                         | -                                |
| Bounded               | 14.9                        | -                                |





#### **Simulation Results – MPC Navigation**





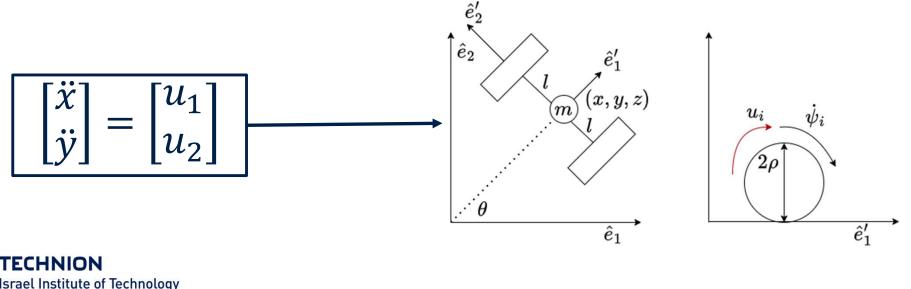
#### **MPC Navigation Vs. Kinodynamic Planner**

**TECHNION** Israel Institute of Technology

<sup>1</sup>SST\* Planner from OMPL by Sucan et al. <u>ompl.kavrakilab.org</u> 24

#### **Future Research Goals**

- Integrate newer and faster solvers to increase prediction horizon.
- Replace double-integrator model with non-holonomic vehicle models.



## Thank You! Questions?

