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Navigation with Artificial Potential Fields I

Path Planning

Find a path between the start
and target.

Path must be safe — avoid
obstacle collision.

Tracking the planned path.

Control inputs must comply
with the system constraints.

Artificial Potential Fields

>

Encompasses complete
information about the
obstacle-free space.

Used to form a
feedback controller.

Robot navigation using artificial potential fields unifies the path planning

__ problem with the feedback controller design.
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Navigation Functions

» Let g, be a target point in the
obstacle free space W. A ¢%-smooth
functiong : W - [0,1] navigation
function if

— (p polar with unique minimum at
target

— All other critical points of ¢ are non-
degenerate saddle points

— (¢ admissible with uniform maximal
value on boundary of W
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Navigation Function Construction

» Using tuning parameter k the navigation function is

p(q) = — AL

(y (@) +B())

Obstacle Product
B(q) =116:(q)

‘ Distance to Target ‘
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Tuned Navigation Functions
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Navigation Function Classical Control Law

Classical control law : u(t) = —Vep(x) — Cx C>0

Asymptotic convergence to target using total mechanical energy as
a Lyapunov function V(x, x) :

. 1 2
Vix,x) = p(x) + §m|lxl|

v
=Yg i+m: (&%) =-i"Ci<0

LaSalle’s invariance principle: robot trajectories converge to target from
almost all initial points in W (zero speed at target)
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Bounded Control Input Problem I | |

Ensure bounded control inputs using robot navigation functions : I
Preserve the navigation function collision safety and arrival to target

Problem Statement :

Construct feedback control law that guides robot system mi(t) = u(t)
to the target while avoiding collision with known obstacles under
control input bound ||u|| € Fpax-
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Bounded Control Law I | |

Bounded control navigation function law \ I
u(t) =—h-Vo — Fp - (v(p : )v¢ — Fy - (V(pl , )V(pl .

Based on a conservative rectangular bound (2F;)? + Fy < E4y-
denotes robot velocity direction - 7 = ﬁ
h > 0 is a scaling factor — used to enforce control input bound.
Using the modified Lyapunov function
V(x,%) =h- ) +%m||5c||2

—~

TECHNION _ _ _ _
u Israel Institute of Technology Ravina, Rimon & Loizou, "Bounded control mobile robot navigation functions”, MED 2024 8



Gradient Scaling Caveat

» Gradient scaling by h requires global
information about the environment:
Fr

max| V||

» Computation of h currently done
numerically over the environment

» Adaptive on-line scaling law?
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Simulation Results — Classical Law Vs Bounded Law

J

Classical law trajectory bounded control law trajectory
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Navigation Function Based Time Optimal Control I / |

Problem Statement : : I

Construct feedback control law that guides robot system mi(t) = u(t)
to the target while avoiding collision with known obstacles under
control input bound ||ul| £ Fpay in minimal navigation time ¢;.

Solution Approaches
me = u
u*
{ mx = u
J MPC }H
Open-loop
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Time Optimal Navigation — Open Loop I / |

Considers the optimal control problem I

( min t; subjet to:
Xy Uty

1
51 =[]
p(x,y) <1
|u1| = F1 lu,| < F,
x(O) [x(tf)] B [xs
J’(O) y(te)|

A

The uniform maximal height of ¢ is used as a single safety constraint.
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Simulation Results - Time Optimal Navigation
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=D e(x)
Trajectory

| ¥ ar

» Resulting optimal trajectory reminds of desire paths!
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Closed Loop Pseudo-Time Optimal Navigation I / |

Problem: ]

Minimum time solution requires global solution — invalid for real-time.
Suggested Solution:

Choose virtual target that minimizes the navigation function value at the end
of the prediction time T,,.

([ min@(xy,yy) subjet to:
ZjUj
zjy1 = (I + AtA)z; + AtBu; ¢ <j<N-1
ga(xj,yj) <1 T, = NAt
lus| < F, lug| < F

\ Z1 = Zmeasured

A
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Closed Loop Pseudo-Time Optimal Navigation I

Closed loop implementation of the solution of (1) using : I
(1) requires global solution — an problem is solved.
A virtual target qr; is chosen to o(qr,;)-
_ G (" min tri -
{mmgo (qTri(TP)) el <1 ot >| Execute u* for At |
I, = NAt kCI(tf,i) =qr, }
‘ I Measure g |
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Closed Loop Pseudo-Time Optimal Navigation I P

51
4t
3t
2t
1
§ 0
-1
2+
-3+
R
5 F i
5 0 5
T

—~

TECHNION
u Israel Institute of Technology 17



Simulation Results — MPC Navigation

|
Steps N | Time t;[s] | & [S] 4|
12 7.7 0.076 ’| .
16 7.2 0.174 |
20 6.5 0.186 of
24 6.6 0.228 i\ I’
28 6.3 0.246
Time-optimal 5.4 “‘ P =
Bounded 14.9 - e i :
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Simulation Results — MPC Navigation
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Simulation Results — MPC Navigation

s
Steps N | Time t;[s] | & [S] 4|
12 7.7 0.076 i
16 7.2 0.174 i
20 6.5 0.186 of
24 6.6 0.228 i\
28 6.3 0.246
Time-optimal 5.4 “‘ L
Bounded 14.9 i i S ;5

o
V TECHNION
u Israel Institute of Technology 20



Simulation Results — MPC Navigation

Prediction | Navigation | Solve time
Steps N Time Ly ] Esolve |s]
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28
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Bounded
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Simulation Results — MPC Navigation

s-

Steps N Time &7 [s] |  Zso1pe [S] 4
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Simulation Results — MPC Navigation E\
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MPC Navigation Vs. Kinodynamic Planner
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Future Research Goals I / |

Integrate newer and faster solvers to increase prediction horizon. - I

Replace double-integrator model with non-holonomic vehicle models.
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Thank You!
Questions?
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