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Motivation & Background

* Legged robots are constantly developing and are used in

many fields to aid human work and safety.

* These are usually inspired by animals, from bipedal
humans and birds to multi-legged insects and other

crawlers.

From top to bottom: Boston Dynamics’ Atlas, Agility Robotics’ Cassie, Boston
Dynamics’ Spot and CSRIO Data61’s Gizmo.




Key Ideas

* Multi-legged animals have “rhythmic” (almost periodic) gaits.

* Gaits —repeated shape changes of the body that move it in the world.

* Arhythmic gait can be modelled as an oscillator (which decays into a limit cycle

that is governed by a phase); with system noise (defined by Floquet theory).

1. Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical control architectures for running. Progress in motor control: a multidisciplinary
perspective. 2009:25-55.
2. Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110



Key Ideas

* The system is an oscillator; its variables also oscillate. Therefore, we can find

subsystems that are also oscillators.

* Complicated mechanical coupling between DOFs reduces to coupling between

oscillators which further reduces to co.

* In small deviations about a cycle, there is coupling between phases.
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Key ldeas — Oscillators as Framework

* We can use coupled phase oscillators as a framework

for a family of models for rhythmic motion. /-’ @

 Mechanical systems’ dynamics are complicated
* Measurements are partial and noisy.

* Thus, we chose to develop data-driven tools for this V—. ik
framework. ~
)

Revzen S. and Kvalheim M. Locomotion as an Oscillator.
Bioinspired Legged Locomotion. 2017:97-110
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Use coupled phase oscillators as
Develop data driven tools that

models for gaits instead of classical .
can perform this task.

mechanical dynamics.

Research Goals



Main Research
Contributions

Produced a synthetic dataset of
motions based on coupled Hopf
oscillators.

Synthetic Data

Chose the random perturbation
parameters to mimic statistics
from real robot’s noisy data.

Compared our coupled-
oscillators model to a phase
oscillator driving a limit cycle; and
a Data-Driven Floquet Analysis
model.

The 3 Models




The 3 Models



The 3 Models

1. A phase oscillator driving a limit cycle
2. Data-Driven Floquet Analysis (DDFA)

3. A coupled phase oscillator Model

Limit Cycle
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Why Have 3 models?

* We know the limit cycle cannot model perturbation but easy to calculate.
* DDFA models need lots of data to calculate and predict things other than phase.

* Coupling Oscillator model - is a middle ground between ease of calculation and

prediction power.



1. The Limit Cycle

* We model our system x(t) as the periodic solution.

* Our system has a global phase ¢(t) such that
@(t) = e/ ¢(0).

x(t) = y(o())

 Defining the limit cycle y(¢) which we estimate as

a Fourier series. Norg

7O = ) cpel™

m=—Nyrd

* With the condition that ¢ (0) is the phase of x(0).

x(t)

Y(e®)



1. The Limit Cycle
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2. Data-Driven Floquet Analysis

* |[n our case the system x(t) isn’t always at the
limit cycle so we assume some perturbations 8(t)

from the limit cycle y(o):
x(t) = y(p) + 8(¢)
* |n practice we estimated perturbations

.k , .
{S[n]} as the difference from the limit cycle:

8%[n] = R*[n] — P(¢*[n])

Y(o(®)

x(.t)




[2] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields. Springer Science & Business Media; 2013 Nov 21. 24-25

2. Floquet Theory

* Floquet theory governs linear time periodic (LTP) differential equations.

* |t defines a flow matrix that determines the behavior of solutions near the limit

cycle [2]. | N << s

basis of orbit

invariant
subspaces of :
return map

return map
section

(8(t) = Mg ()8(0)
o(t) =e/*" 8

. @ (0)

e —_

A

( )
6 Poincare
section
invariant ’

manifolds
associated
with Floquet state

S. Revzen :
basis space

e The flow matrix is estimated as M[8, n] using LLS of pairs of perturbations

P

- Kk
{8[n],8[n + s]} for multiple paths s samples apart.



2. Data-Driven
Floguet Analysis

* The propagating perturbation 1\71[6 s]8¥[n] is now added to the prediction from before:

X[n+s

Compare: Subsystem Phases
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3. Subsystem Phase

Kinematic Phase Estimate (K)

* When looking at data and modeling as an A High Dimensional Cycle
motions of tripod centroids) gi
oscillator we can model partial data as i
. . BPrt:rjer:th:m on )
an oscillating subsystem. Sub-Systems®,
(provide @, ®,,,... £
efc.; prujectionsgive - “"*i 4
position afgdugelomty of ; .
* We chose a set of natural subsystems - 1B ==
the robot legs. .
* Whether this is a sufficient model is the c 5.
Unwrapping the Cycles
. . instantaneous phase over 5 — Frst Cycl
maln questlon. multiple cycles : | k’i"' frequency
] 100 200 Tim!:{ms]m S00 600

Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical
@ control architectures for running. Progress in motor control: a
multidisciplinary perspective. 2009:25-55.




3. Coupled Phase Oscillator Model

* Instead of modeling the entire path we only model the phase states of each

subsystem using a coupling term and stochastic noise:
hi(0) = 0 + Z 6ii(9) (6,() = $i(©)) + v

* For simplicity we use phases as real numbers from now on.

* N isthe number of subsystems (number of legs).
Revzen S. and Kvalheim M. Locomotion as an Oscillator.
Bioinspired Legged Locomotion. 2017:97-110 |




3. Coupled Phase Oscillator Model

* Using a bit of algebra, we can convert the equation into vector form for all legs

where each element is the “relative phase” 5;(t) = ¢;(t) — 2p: B(t) = A(p)B(t)
* With Floquet solution: B(t) = Fy[t]B(0).

* F represents a flow matrix of phase perturbation from global phase, which we can

estimate similarly to DDFA as F|[6, s].

i

Revzen S. and Kvalheim M. Locomotion as an Oscillator.
Bioinspired Legged Locomotion. 2017:97-110




3. Coupled Phase
Oscillator Model

* The leg phases are then estimated as:

¢ [rad]
residual from wt

subsys 6

@ [n + s] = (wsAt + 2p*[n]) + F[6, s]B*[n]

* Where % = [¢F, ..., ¢y,]

» We then similarly use N, Fourier series i); as

limit cycle estimations of each leg where o

%5 [n+s]=9(Pfn +s]): RS,

(i

x3[n +s] = P(@"[n + s])
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Main Research
Contributions

Produced a synthetic dataset of
motions based on coupled Hopf
oscillators.

Synthetic Data

Chose the random perturbation
parameters to mimic statistics
from real robot’s noisy data.

The 3 Models




Synthetic Data



Dataset

e Research is based on data collected from Octobot —an 8-
legged modular robot developed by our collaborators at

the BIRDS lab at the University of Michigan.

* This was used to create a synthetic dataset as a tool for

comparing models.




Why Synthetic Data?

* Parameters are not known for real data (such as coupling).
* Gives us a ground truth to compare to.

* Allows for easy configuration of working environment.



Synthetic Data

Chose the random perturbation

Main Research parameters to mimic statistics
Contributions from real robot’s noisy data.

The 3 Models




Noise Parameter
|dentification



Why Extract Noise Parameters?

» Statistical power depends on noise.
* Too little noise — not enough perturbations.
* Too much noise — not enough correlation.

* Parameters such as phase standard deviation should track real-world data.



Noise Parameter ldentification

e Phase is a circular variable: usual mean and variance cannot be used.

* We estimated noise parameters using directional statistics.

 Directional statistics — statistics of directions and rotations on a unit circle.



Synthetic Data

Main Research
Contributions

The 3 Models




Results




Relative Remaining Variance - variance of

M Od el CO m pa rISO N prediction residuals relative to variance of

Cartesian RRV data (from limit cycle) [4].

[4] H.M. Maus et. al., 2015, Constructing predictive models of
human running

w——— e
model
I limit cycle
I ddfa
B coupled osclllator
T T T T
=02 ﬂ.ﬂ 0.2 0.4 0.6 0.8 1.0

RRV



Model Comparison Average RRV

m Phase RRV Radius RRV Cartesian RRV

Limit Cycle 0.273 -0.013 -0.038
DDFA 0.764 0.334 0.578
Coupled Oscillator 0.766 0.008 0.515

Relative Remaining Variance - variance of
prediction residuals relative to variance of data

(from limit cycle)[4]. [4] H.M. Maus et. al., 2015, Constructing predictive models of
human running



Summary

* Multi-legged robots can be modeled as both a phase oscillator or as

subsystems of coupled phase oscillators.

* Intheory model of coupled phase-oscillators can be as good as full Floquet

analysis.

* There is a range of parameters that the robot works with for our model to be

accurate.



Thank You




Questions




Mathematical Background



Floguet Theory

* Given a LTP system with period T: x(t) = A(t)x(t), A(t + T) = A(t)

* For a fundamental solution matrix X(t) of the system:

X(t+T) =X(®)X(0)"X(T)

* In the theory of oscillators X(T) is called the Monodromy matrix with its

eigenvalues the characteristic multipliers determining stability of the system.

il p,
basis of orbit
invariant
subspaces of
return map
return map

SSSSSSS

invariant




Floguet Theory

* There exists a periodic matrix P(t) with period T, and constant matrix R both non-

singular such that:

X(t) = P(t)eRt

* There also exists a coordinate transformation with periodic matrix Z(t):

v =20Ox@0) T
't; : :‘Stpf remm[jmap
o= Q




Floguet Theory

* This allows for the creation of new coordinates based on the Floquet multipliers

that is periodic and coincides with the system limit cycle.

 Each Floquet multiplier affects the magnitude of perturbation in the direction of

the matching eigenvector. Thus, operating as modes.

il P
basis of orbit
invariant
subspaces of
t map
return map
section
%




Floguet Theory

» Our system has a global phase ¢(t) such that @(t) = e'®t¢(0), defining the limit
cycle y(o(t)).
* |n our case the system x(t) isn’t always at the limit cycle so we assume some

perturbations 8(t) from the limit cycle y(go(t)):

x(t) = y(e(®)) + 8(t)
 With the condition that ¢ (0) is the phase of x(0).




Floguet Theory

* Thus, our dynamical system can be defined as:

do(t) = iwe(t)dt
d8(t) = H(p)d(t)dt

* For some non-singular matrix H(¢).

basis of orbit
t
bsp f
t map
return map
section
Fa S
Poincare
S section
invariant f
manifold : q
sssss jated |
with Flogquet state
asis space



Floguet Theory

e Let F be the fundamental solution matrix to the LTP F = H(ei“)t)F, F(0) = Ithen:

o (1) = et p(0)
8(t) = F,(0)()8(0)

* Where we define: Fy(t) := F (t + 25 6) F~! (arg 9)

w w

* |[n practice we need to estimate these equations using a DDFA.

SSSSSSS

invariant




General Theory

* We identify the 1-dimensional torus T with the circle §1, and consider those

to be the complex unitcircle {z € Cs.t.|z| = 1}.



Modeling

* A sufficiently smooth dynamical system ®: R X X — X.
* Fort,s e R, x € X: P'%x = x, (d 0o d5)x = d5x

 Assume it is an oscillator therefore de define 4 different parameters with the

system.



Modeling

1. A“global phase” @:X — T and w > 0 such that for all t, x: @ (Dx) = e/t p(x)
This phase is not unique.

2. A“limitcycle”y: T! - I' € X such that: y(e/¢t) = ®!(y(1)) and y is onto.

3. A“phase projection” P: X - I' such that P(x) := y(go(x)).

It follows that for all t: P o ®! = dt o P.

4. The limit cycle is exponentially stable. There exits @ > 0 such that for all ¢, x:

[(@°x) — P(@x)]| < e™[Ix — PX)|



Data Driven Framework

» To obtain a model of ®2! we use pairs of sampled states, where At is the

sampling interval.
« We denote at time nAt the state on trajectory k as £¢[n] .
* Anideal (noise-free) dataset is assumed to be pairs (ﬁk[n],ﬁk[n + 1]).

* We assume the actual data has a memoryless Gaussian noise process v that

is added to the time evolution: ®* :== ®At + v,



Phase Estimation

 We rely on a phase estimation method, which given the dataset {X*[n]}

provides an estimated phase {¢@*[n]} for each data point.

* The phase estimation must be consistent across multiple trajectories in the

dataset.

* We used the Phaser algorithm[1] which estimates the instantaneous phase

for each sample pointin a given noisy system dataset.

[1] Revzen S, Guckenheimer JM. Estimating the phase of synchronized oscillators. Physical Review E—Statistical,
Nonlinear, and Soft Matter Physics. 2008 Nov;78(5):051907.



Assumptions

The Data-Driven Models we construct rely on some assumptions about the noise and the

limit cycle. Let T be the oscillation period of I', L be the Euclidean length of T', and o%(X) be

the variance of the noise process v at point x € X. We assume

1. o does not change much, i.e. for any x,y € X o*(x)/(¢%(x) + o*(y)) is sufficiently close
to 1/2.

2. Veo? <« L.

3. 1000 > T/ At > 10.

4. T > 3/a for o the exponential convergence rate bound.

kg |

. Each experiment should be at least 21" or more.



DDFA

Because @ is smooth, we can develop ®“(x) into a first order expansion:
®'(x) := ®'(P(x) + ) = ®'(P(x)) + D®'(P(x))d + r(x,9), (2.6)

where the residual r satisfies lims_,o 7(x, 8)/||8|| = 0. We can now define M : T' xRxTX — TX
as

M6, t] := D&"(~()), (2.7)




DDFA

. ~ ~k
The DDFA model consists of estimating M and using this estimate M to predict § [n + s].
We selected N, evenly spaced phases ¢y, = &5 and define for any ¢ € T! that |¢] is
the closest ¢, to ¢. Using this we computed M[Llﬂ, s| as the least squares solution of:

M(16], 518" [n] = 8" n + 8] s.t. |@*]] = |61, (2.8)




Coupled Phase Oscillator Model

* Instead of modeling the entire path we only model the phase of each leg using a

coupling term and stochastic noise:
Ns
d:i(t) = w + z cji(p) (¢j(t) — ¢i(t)) + dv
j=1
* For simplicity we use phases as real numbers from now on.

* N is the number of legs.

) S

Revzen S. and Kvalheim M. Locomotion as an Oscillator.
Bioinspired Legged Locomotion. 2017:97-110 |




Coupled Phase Oscillator Model

» We define the residual phases S;(t) = ¢;(t) — 2p(t) where the global phase is

o (t) = e/®tp(0) such that: N

pi(t) = z ¢ji(p) (,Bj (t) — ﬁi(t)) + dv
* Rewriting: a

N

fi() = ) (@) (0) = Bilt) Z i (@) + dv

j=1




Coupled Phase Oscillator Model

* Let us define the two coupling matrices C(¢), D(¢), A(p):

Clp) =

A(p) = C"(p) — D(p)

<

' c11(9)

_CNsl. ()

C1Ng () |

- CNgNg (QO)_

— NS

Yey@ 00

« Which gives the equation: B(t) = A(@)B(t)




Coupled Phase Oscillator Model

* We now have an LTP system: B(t) = A(@)B(t)
* Solving using Floquet theory: B(t) = F[0, t]B(0)

* Where we have a matrix F[8, t] which is the flow matrix that is solved according to

Floquet theory.
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1. The Limit Cycle

For sample paths of a stochastic differential equation:

« {X[n]}*-thek = 1,..., N sampled paths, withn = 1, ..., T, sample points for each

path, a sampling interval At, and a sufficiently tame noise process.

~

®[n]}* - corresponding instantaneous phases.

(@) - estimated limit cycle as a fitted Fourier series of order N, 4.

-

Nord

FO)i= ) cpel™

m=—Nord




2. Data-Driven Floquet Analysis

* Our dynamical system can be defined using ¢@(t) and 8(t) with My (t) the matrix

representing the flow of perturbations from some initial phase 6.

(8(t) = Mg(£)8(0)
) o) =e/*t o

el #
basis of orbit
invariant
arg 9 1 arg 9 subspaces of ?
MQ (t) = M r + M BRSNS return map
(1) (1) section
."//A.
’ ; Poincare
; section
invariant
manifolds : ’ :
associated
= with Floquet state
1 S. Revzen basis space




Synthetic Data

* We use a “Hopf” oscillator to simulate the motion of each robot leg.

* Dynamics are governed by the following equations in polar coordinates:
7, (6) = a(1 —7;(t)) +1;(6;(®)) + 6v,.
N
éi(t) = w + 2 Cl] (Hj(t) — Hl(t)) + 51/5
j=1

* Here the phase of each subsystem is coupled with all other subsystems.



Synthetic Data

Sim: 2 Subsystem Phases Relative to Each Other

Sim: Comparing Relative Phases

Example 1

Example 1

run 21
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