

Chen Reichsbouscher

Supervised by Assoc. Profs. Yizhar Or and Shai Revzen (University of Michigan) Coupled Oscillator Models for Multilegged Robots

Outline

Motivation & Key Ideas

Research Goals

Research Contributions

Synthetic Data

Noise Parameter Identification

The 3 Models

Summary

Motivation & Background

- Legged robots are constantly developing and are used in many fields to aid human work and safety.
- These are usually inspired by animals, from bipedal humans and birds to multi-legged insects and other crawlers.

Key Ideas

- Multi-legged animals have "rhythmic" (almost periodic) gaits.
 - Gaits repeated shape changes of the body that move it in the world.
- A rhythmic gait can be modelled as an oscillator (which decays into a **limit cycle** that is governed by a **phase**); with system noise (defined by **Floquet theory**).

- 1. Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical control architectures for running. Progress in motor control: a multidisciplinary perspective. 2009:25-55.
- 2. Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110

Key Ideas

- The system is an oscillator; its variables also oscillate. Therefore, we can find subsystems that are also oscillators.
- Complicated mechanical coupling between DOFs reduces to coupling between oscillators which further reduces to co.
- In small deviations about a cycle, there is coupling between **phases**.

Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical control architectures for running. Progress in motor control: a multidisciplinary perspective. 2009:25-55.

Key Ideas – Oscillators as Framework

- We can use **coupled phase oscillators** as a framework for a family of models for rhythmic motion.
- Mechanical systems' dynamics are complicated
- Measurements are partial and noisy.
- Thus, we chose to develop data-driven tools for this framework.

Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110

Use **coupled phase oscillators** as models for gaits instead of classical mechanical dynamics.

Develop data driven tools that can perform this task.

Research Goals

Produced a synthetic dataset of motions based on coupled Hopf oscillators.

Synthetic Data	

Main Research Contributions

Chose the random perturbation parameters to mimic statistics from real robot's noisy data.

Noise Parameter Identification

Compared our coupledoscillators model to a phase oscillator driving a limit cycle; and a Data-Driven Floquet Analysis model.

The 3 Models

Why Have 3 models?

- We know the limit cycle cannot model perturbation but easy to calculate.
- DDFA models need lots of data to calculate and predict things other than phase.
- Coupling Oscillator model is a middle ground between ease of calculation and prediction power.

1. The Limit Cycle

- We model our system $\mathbf{x}(t)$ as the periodic solution.
- Our system has a **global phase** $\varphi(t)$ such that
 - $$\begin{split} \varphi(t) &= e^{j\omega t} \varphi(0). \\ \mathbf{x}(t) &\approx \mathbf{\gamma} \big(\varphi(t) \big) \end{split}$$
- Defining the limit cycle $\mathbf{\gamma}(\varphi)$ which we estimate as

a Fourier series.

$$\hat{\mathbf{\gamma}}(\theta) := \sum_{m=-N_{ord}}^{N_{ord}} c_m e^{jm\theta}$$

• With the condition that $\varphi(0)$ is the phase of $\mathbf{x}(0)$.

1. The Limit Cycle

• The prediction $\tilde{\mathbf{x}}_0^k[n+s]$ from some initial state and phase $\hat{\mathbf{x}}^k[n]$, $\hat{\varphi}^k[n]$ by advancing

s sample points into the future, consists of advancing the limit cycle by the phase

difference.

$$\tilde{\mathbf{x}}_0^k[n+s] = \hat{\mathbf{\gamma}} \left(e^{j\omega s \Delta t} \hat{\varphi}^k[n] \right)$$

2. Data-Driven Floquet Analysis

• In our case the system $\mathbf{x}(t)$ isn't always at the limit cycle so we assume some perturbations $\mathbf{\delta}(t)$ from the limit cycle $\mathbf{\gamma}(\varphi)$:

 $\mathbf{x}(t) \approx \mathbf{\gamma}(\varphi) + \mathbf{\delta}(t)$

• In practice we estimated perturbations $\{\widehat{\boldsymbol{\delta}}[n]\}^k$ as the difference from the limit cycle:

$$\widehat{\boldsymbol{\delta}}^{k}[n] \coloneqq \widehat{\mathbf{x}}^{k}[n] - \widehat{\boldsymbol{\gamma}}(\widehat{\varphi}^{k}[n])$$

[2] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media; 2013 Nov 21. 24-25

2. Floquet Theory

- Floquet theory governs linear time periodic (LTP) differential equations.
- It defines a flow matrix that determines the behavior of solutions near the limit

• The flow matrix is estimated as $\widehat{\mathbf{M}}[\theta, n]$ using LLS of pairs of perturbations

 $\{\widehat{\boldsymbol{\delta}}[n], \widehat{\boldsymbol{\delta}}[n+s]\}^k$ for multiple paths *s* samples apart.

2. Data-Driven Floquet Analysis

• The propagating perturbation $\widehat{\mathbf{M}}[\theta, s]\widehat{\boldsymbol{\delta}}^{k}[n]$ is now added to the prediction from before:

 $\tilde{\mathbf{x}}_{1}^{k}[n+s] = \hat{\mathbf{\gamma}} \left(e^{j\omega s \Delta t} \hat{\varphi}^{k}[n] \right) + \widehat{\mathbf{M}}[\theta, s] \widehat{\mathbf{\delta}}^{k}[n]$

3. Subsystem Phase

- When looking at data and modeling as an oscillator we can model partial data as an oscillating subsystem.
- We chose a set of natural subsystems the robot legs.
- Whether this is a sufficient model is the main question.

Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical control architectures for running. Progress in motor control: a multidisciplinary perspective. 2009:25-55.

• Instead of modeling the entire path we only model the phase states of each subsystem using a coupling term and stochastic noise:

$$\dot{\phi}_i(t) = \omega + \sum_{j=1}^{N_s} c_{ji}(\varphi) \left(\phi_j(t) - \phi_i(t) \right) + d\nu$$

- For simplicity we use phases as real numbers from now on.
- N_s is the number of subsystems (number of legs).

Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110

- Using a bit of algebra, we can convert the equation into vector form for all legs where each element is the "relative phase" $\beta_i(t) = \phi_i(t) - \angle \varphi$: $\dot{\beta}(t) \approx \mathbf{A}(\varphi) \mathbf{\beta}(t)$
- With Floquet solution: $\beta(t) = \mathbf{F}_{\theta}[t]\beta(0)$.
- **F** represents a flow matrix of phase perturbation from global phase, which we can estimate similarly to DDFA as $\mathbf{F}[\theta, s]$.

Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110

• The leg phases are then estimated as:

 $\widetilde{\boldsymbol{\varphi}}^k[n+s] = \left(\omega s \Delta t + \angle \widehat{\varphi}^k[n] \right) + \widehat{\mathbf{F}}[\theta,s] \widehat{\boldsymbol{\beta}}^k[n]$

- Where $\widetilde{oldsymbol{\phi}}^k = [\widetilde{\phi}_1^k, \dots, \widetilde{\phi}_{N_s}^k]$
- We then similarly use N_s Fourier series $\hat{\psi}_i$ as limit cycle estimations of each leg where

$$\tilde{\mathbf{x}}_{2,i}^{k}[n+s] = \hat{\psi}_{i} \big(\tilde{\phi}_{i}^{k}[n+s] \big):$$

$$\widetilde{\mathbf{x}}_{2}^{k}[n+s] = \widehat{\mathbf{\Psi}}\big(\widetilde{\mathbf{\varphi}}^{k}[n+s]\big)$$

Model Comparison

Model Comparison

Produced a synthetic dataset of motions based on coupled Hopf oscillators.

Synthetic Data

Main Research Contributions

Chose the random perturbation parameters to mimic statistics from real robot's noisy data.

Noise Parameter Identification

Compared our coupledoscillators model to a phase oscillator driving a limit cycle; and a Data-Driven Floquet Analysis model.

Synthetic Data

Dataset

- Research is based on data collected from Octobot an 8legged modular robot developed by our collaborators at the BIRDS lab at the University of Michigan.
- This was used to create a synthetic dataset as a tool for comparing models.

Why Synthetic Data?

- Parameters are not known for real data (such as coupling).
- Gives us a ground truth to compare to.
- Allows for easy configuration of working environment.

Produced a synthetic dataset of motions based on coupled Hopf oscillators.

Main Research Contributions

Chose the random perturbation parameters to mimic statistics from real robot's noisy data.

Compared our coupledoscillators model to a phase oscillator driving a limit cycle; and a Data-Driven Floquet Analysis model.

Noise Parameter

Identification

Noise Parameter Identification

Why Extract Noise Parameters?

- Statistical power depends on noise.
- Too little noise not enough perturbations.
- Too much noise not enough correlation.
- Parameters such as phase standard deviation should track real-world data.

Noise Parameter Identification

- Phase is a circular variable: usual mean and variance cannot be used.
- We estimated noise parameters using **directional statistics**.
 - Directional statistics statistics of directions and rotations on a unit circle.

Produced a synthetic dataset of motions based on coupled Hopf oscillators.

Main Research Contributions

Chose the random perturbation parameters to mimic statistics from real robot's noisy data.

Compared our coupledoscillators model to a phase oscillator driving a limit cycle; and a Data-Driven Floquet Analysis model.

Noise Parameter

Identification

Model Comparison

Relative Remaining Variance – variance of

prediction residuals relative to variance of

Cartesian *RRV* data (from limit cycle) [4].

[4] H.M. Maus et. al., 2015, *Constructing predictive models of human running*

Model Comparison Average RRV

Model	Phase RRV	Radius RRV	Cartesian RRV
Limit Cycle	0.273	-0.013	-0.038
DDFA	0.764	0.334	0.578
Coupled Oscillator	0.766	0.008	0.515

Relative Remaining Variance – variance of prediction residuals relative to variance of data (from limit cycle)[4].

[4] H.M. Maus et. al., 2015, Constructing predictive models of human running

Summary

- Multi-legged robots can be modeled as both a phase oscillator or as subsystems of coupled phase oscillators.
- In theory model of coupled phase-oscillators can be as good as full Floquet analysis.
- There is a range of parameters that the robot works with for our model to be accurate.

Thank You

Mathematical Background

- Given a LTP system with period $T: \dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t), \mathbf{A}(t+T) = \mathbf{A}(t)$
- For a fundamental solution matrix $\mathbf{X}(t)$ of the system:

 $\mathbf{X}(t+T) = \mathbf{X}(t)\mathbf{X}(0)^{-1}\mathbf{X}(T)$

• In the theory of oscillators $\mathbf{X}(T)$ is called the **Monodromy** matrix with its

eigenvalues the characteristic multipliers determining stability of the system.

• There exists a periodic matrix $\mathbf{P}(t)$ with period T, and constant matrix \mathbf{R} both nonsingular such that:

$$\mathbf{X}(t) = \mathbf{P}(t)e^{\mathbf{R}t}$$

• There also exists a coordinate transformation with periodic matrix $\mathbf{Z}(t)$:

$$\mathbf{y}(t) = \mathbf{Z}(t)\mathbf{x}(t)$$

- This allows for the creation of new coordinates based on the Floquet multipliers that is periodic and coincides with the system limit cycle.
- Each Floquet multiplier affects the magnitude of perturbation in the direction of the matching eigenvector. Thus, operating as modes.

- Our system has a **global phase** $\varphi(t)$ such that $\varphi(t) = e^{i\omega t}\varphi(0)$, defining the limit cycle $\gamma(\varphi(t))$.
- In our case the system $\mathbf{x}(t)$ isn't always at the limit cycle so we assume some perturbations $\boldsymbol{\delta}(t)$ from the limit cycle $\boldsymbol{\gamma}(\varphi(t))$:

 $\mathbf{x}(t) = \mathbf{\gamma}(\varphi(t)) + \mathbf{\delta}(t)$

• With the condition that $\varphi(0)$ is the phase of $\mathbf{x}(0)$.

• Thus, our dynamical system can be defined as:

 $d\varphi(t) = i\omega\varphi(t)dt$ $d\delta(t) = \mathbf{H}(\varphi)\delta(t)dt$

• For some non-singular matrix $\mathbf{H}(\varphi)$.

• Let **F** be the fundamental solution matrix to the LTP $\dot{\mathbf{F}} = \mathbf{H}(e^{i\omega t})\mathbf{F}$, $\mathbf{F}(0) = \mathbf{I}$ then:

 $\varphi(t) = e^{i\omega t}\varphi(0)$ $\mathbf{\delta}(t) = \mathbf{F}_{\varphi(0)}(t)\mathbf{\delta}(0)$

- Where we define: $\mathbf{F}_{\theta}(t) \coloneqq \mathbf{F}\left(t + \frac{\arg\theta}{\omega}\right) \mathbf{F}^{-1}\left(\frac{\arg\theta}{\omega}\right)$
- In practice we need to estimate these equations using a DDFA.

General Theory

• We identify the 1-dimensional torus \mathbb{T}^1 with the circle S^1 , and consider those to be the complex unit circle $\{z \in \mathbb{C} s. t. |z| = 1\}$.

Modeling

- A sufficiently smooth dynamical system $\Phi: \mathbb{R} \times X \to X$.
- For $t, s \in \mathbb{R}$, $\mathbf{x} \in \mathbf{X}$: $\Phi^0 \mathbf{x} = \mathbf{x}$, $(\Phi^t \circ \Phi^s) \mathbf{x} = \Phi^{t+s} \mathbf{x}$
- Assume it is an oscillator therefore de define 4 different parameters with the system.

Modeling

1. A "global phase" $\varphi: \mathbf{X} \to \mathbb{T}^1$ and $\omega > 0$ such that for all $t, \mathbf{x}: \varphi(\Phi^t \mathbf{x}) = e^{j\omega t}\varphi(\mathbf{x})$ This phase is not unique.

2. A "limit cycle" $\gamma: \mathbb{T}^1 \to \Gamma \subseteq \mathbf{X}$ such that: $\gamma(e^{j\omega t}) = \Phi^t(\gamma(1))$ and γ is onto.

3. A "phase projection" $\mathbf{P}: \mathbf{X} \to \mathbf{\Gamma}$ such that $\mathbf{P}(\mathbf{x}) \coloneqq \mathbf{\gamma}(\varphi(\mathbf{x}))$.

It follows that for all $t: \mathbf{P} \circ \Phi^t = \Phi^t \circ \mathbf{P}$.

4. The limit cycle is exponentially stable. There exits $\alpha > 0$ such that for all t, \mathbf{x} : $\|(\Phi^t \mathbf{x}) - \mathbf{P}(\Phi^t \mathbf{x})\| < e^{-\alpha t} \|\mathbf{x} - \mathbf{P}(\mathbf{x})\|$

Data Driven Framework

- To obtain a model of $\Phi^{\Delta t}$ we use pairs of sampled states, where Δt is the sampling interval.
- We denote at time $n\Delta t$ the state on trajectory k as $\hat{\mathbf{x}}^k[n]$.
- An ideal (noise-free) dataset is assumed to be pairs $(\hat{\mathbf{x}}^k[n], \hat{\mathbf{x}}^k[n+1])$.
- We assume the actual data has a memoryless Gaussian noise process ν that is added to the time evolution: $\Phi^* \coloneqq \Phi^{\Delta t} + \nu$.

Phase Estimation

- We rely on a phase estimation method, which given the dataset $\{\hat{\mathbf{x}}^k[n]\}$ provides an estimated phase $\{\varphi^k[n]\}$ for each data point.
- The phase estimation must be consistent across multiple trajectories in the dataset.
- We used the **Phaser** algorithm[1] which estimates the instantaneous phase for each sample point in a given noisy system dataset.

[1] Revzen S, Guckenheimer JM. Estimating the phase of synchronized oscillators. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2008 Nov;78(5):051907.

Assumptions

The Data-Driven Models we construct rely on some assumptions about the noise and the limit cycle. Let T be the oscillation period of Γ , L be the Euclidean length of Γ , and $\sigma^2(\mathbf{X})$ be the variance of the noise process $\boldsymbol{\nu}$ at point $\mathbf{x} \in \mathbf{X}$. We assume

- 1. σ^2 does not change much, i.e. for any $\mathbf{x}, \mathbf{y} \in \mathbf{X} \sigma^2(\mathbf{x}) / (\sigma^2(\mathbf{x}) + \sigma^2(\mathbf{y}))$ is sufficiently close to 1/2.
- 2. $\sqrt{\sigma^2} \ll L$.
- 3. $1000 > T/\Delta t > 10$.
- 4. $T > 3/\alpha$ for α the exponential convergence rate bound.
- 5. Each experiment should be at least 2T or more.

DDFA

Because Φ is smooth, we can develop $\Phi^t(\mathbf{x})$ into a first order expansion:

$$\Phi^{t}(\mathbf{x}) := \Phi^{t}(\mathbf{P}(\mathbf{x}) + \boldsymbol{\delta}) = \Phi^{t}(\mathbf{P}(\mathbf{x})) + D\Phi^{t}(\mathbf{P}(\mathbf{x}))\boldsymbol{\delta} + r(\mathbf{x},\boldsymbol{\delta}),$$
(2.6)

where the residual r satisfies $\lim_{\delta \to 0} r(\mathbf{x}, \delta) / \|\delta\| = 0$. We can now define $\mathbf{M} : \mathbb{T}^1 \times \mathbb{R} \times \mathsf{T}\mathbf{X} \to \mathsf{T}\mathbf{X}$ as

$$\mathbf{M}[\theta, t] := D\Phi^t(\boldsymbol{\gamma}(\theta)), \tag{2.7}$$

DDFA

The DDFA model consists of estimating \mathbf{M} and using this estimate $\hat{\mathbf{M}}$ to predict $\hat{\boldsymbol{\delta}}^{k}[n+s]$. We selected N_{ϕ} evenly spaced phases $\phi_{m} := e^{j2\pi \frac{m}{N_{\phi}}}$ and define for any $\phi \in \mathbb{T}^{1}$ that $\lfloor \phi \rfloor$ is the closest ϕ_{m} to ϕ . Using this we computed $\hat{\mathbf{M}}[\lfloor \theta \rceil, s]$ as the least squares solution of:

$$\hat{\mathbf{M}}[\lfloor\theta\rceil, s]\hat{\boldsymbol{\delta}}^{k}[n] = \hat{\boldsymbol{\delta}}^{k}[n+s] \text{ s.t. } \left[\hat{\varphi}^{k}[n]\right] = \lfloor\theta\rceil,$$
(2.8)

• Instead of modeling the entire path we only model the phase of each leg using a

coupling term and stochastic noise:

$$\dot{\phi}_i(t) = \omega + \sum_{j=1}^{N_s} c_{ji}(\varphi) \left(\phi_j(t) - \phi_i(t) \right) + d\nu$$

- For simplicity we use phases as real numbers from now on.
- N_s is the number of legs.

Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110

• We define the residual phases $\beta_i(t) \coloneqq \phi_i(t) - \angle \phi(t)$ where the **global phase** is

$$\varphi(t) = e^{j\omega t}\varphi(0)$$
 such that:
 $\dot{\beta}_i(t) = \sum_{j=1}^{N_s} c_{ji}(\varphi) \left(\beta_j(t) - \beta_i(t)\right) + d\nu$

• Rewriting:

$$\dot{\beta}_{i}(t) = \sum_{j=1}^{N_{s}} c_{ji}(\varphi)\beta_{j}(t) - \beta_{i}(t) \sum_{j=1}^{N_{s}} c_{ji}(\varphi) + d\nu$$

• Let us define the two coupling matrices $C(\varphi)$, $D(\varphi)$, $A(\varphi)$:

$$\mathbf{C}(\varphi) = \begin{bmatrix} c_{11}(\varphi) & \dots & c_{1N_s}(\varphi) \\ \vdots & \ddots & \vdots \\ c_{N_s1}(\varphi) & \dots & c_{N_sN_s}(\varphi) \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} \sum_{j=1}^{N_s} c_{1j}(\varphi) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sum_{j=1}^{N_s} c_{N_sj}(\varphi) \end{bmatrix}$$

 $\mathbf{A}(\varphi) = \mathbf{C}^{T}(\varphi) - \mathbf{D}(\varphi)$

• Which gives the equation: $\dot{\beta}(t) = \mathbf{A}(\varphi) \boldsymbol{\beta}(t)$

- We now have an LTP system: $\dot{\boldsymbol{\beta}}(t) \approx \mathbf{A}(\varphi)\boldsymbol{\beta}(t)$
- Solving using Floquet theory: $\beta(t) = \mathbf{F}[\theta, t]\beta(0)$
- Where we have a matrix $\mathbf{F}[\theta, t]$ which is the flow matrix that is solved according to Floquet theory.

Extra Slides

1. The Limit Cycle

For sample paths of a stochastic differential equation:

- $\{\hat{\mathbf{x}}[n]\}^k$ the k = 1, ..., N sampled paths, with $n = 1, ..., T_k$ sample points for each path, a sampling interval Δt , and a sufficiently tame noise process.
- $\{\hat{\varphi}[n]\}^k$ corresponding instantaneous phases.
- $\hat{\mathbf{\gamma}}(\hat{\varphi})$ estimated limit cycle as a fitted Fourier series of order N_{ord} .

$$\widehat{\mathbf{\gamma}}(\theta) := \sum_{m=-N_{ord}}^{N_{ord}} c_m e^{jm\theta}$$

2. Data-Driven Floquet Analysis

• Our dynamical system can be defined using $\varphi(t)$ and $\delta(t)$ with $\mathbf{M}_{\theta}(t)$ the matrix representing the flow of perturbations from some initial phase θ .

Synthetic Data

- We use a "Hopf" oscillator to simulate the motion of each robot leg.
- Dynamics are governed by the following equations in polar coordinates:

$$\dot{r}_i(t) = \alpha \left(1 - r_i(t)\right) + \dot{\eta}_i \left(\theta_i(t)\right) + \delta \nu_r$$
$$\dot{\theta}_i(t) = \omega + \sum_{j=1}^{N_s} C_{ij} \left(\theta_j(t) - \theta_i(t)\right) + \delta \nu_\theta$$

• Here the phase of each subsystem is coupled with all other subsystems.

Synthetic Data

Sim: 2 Subsystem Phases Relative to Each Other Example 1 run 21

