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Motivation & Background

• Legged robots are constantly developing and are used in 

many fields to aid human work and safety.

• These are usually inspired by animals, from bipedal 

humans and birds to multi-legged insects and other 

crawlers.

From top to bottom: Boston Dynamics’ Atlas, Agility Robotics’ Cassie, Boston 

Dynamics’ Spot and CSRIO Data61’s Gizmo.



Key Ideas

• Multi-legged animals have “rhythmic” (almost periodic) gaits.

• Gaits – repeated shape changes of the body that move it in the world.

• A rhythmic gait can be modelled as an oscillator (which decays into a limit cycle

that is governed by a phase); with system noise (defined by Floquet theory).

1. Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical control architectures for running. Progress in motor control: a multidisciplinary

perspective. 2009:25-55.

2. Revzen S. and Kvalheim M. Locomotion as an Oscillator. Bioinspired Legged Locomotion. 2017:97-110



Key Ideas
• The system is an oscillator; its variables also oscillate. Therefore, we can find 

subsystems that are also oscillators.

• Complicated mechanical coupling between DOFs reduces to coupling between 

oscillators which further reduces to co.

• In small deviations about a cycle, there is coupling between phases.

Revzen S, Koditschek DE, Full RJ. Towards testable 

neuromechanical control architectures for running. 

Progress in motor control: a multidisciplinary 

perspective. 2009:25-55.



Key Ideas – Oscillators as Framework

• We can use coupled phase oscillators as a framework 

for a family of models for rhythmic motion.

• Mechanical systems’ dynamics are complicated 

• Measurements are partial and noisy.

• Thus, we chose to develop data-driven tools for this 

framework.

Revzen S. and Kvalheim M. Locomotion as an Oscillator. 

Bioinspired Legged Locomotion. 2017:97-110



Research Goals

Use coupled phase oscillators as 

models for gaits instead of classical 

mechanical dynamics.

Develop data driven tools that 

can perform this task.



Main Research 
Contributions

Produced a synthetic dataset of 
motions based on coupled Hopf 
oscillators.

Chose the random perturbation 
parameters to mimic statistics 
from real robot’s noisy data.

Compared our coupled-
oscillators model to a phase 
oscillator driving a limit cycle; and 
a Data-Driven Floquet Analysis 
model.

The 3 Models

Synthetic Data

Noise Parameter Identification



The 3 Models



The 3 Models

1. A phase oscillator driving a limit cycle

2. Data-Driven Floquet Analysis (DDFA)

3. A coupled phase oscillator Model



Why Have 3 models?

• We know the limit cycle cannot model perturbation but easy to calculate.

• DDFA models need lots of data to calculate and predict things other than phase.

• Coupling Oscillator model – is a middle ground between ease of calculation and 

prediction power.



1. The Limit Cycle

• We model our system 𝐱 𝑡 as the periodic solution.

• Our system has a global phase 𝜑 𝑡 such that 

𝜑 𝑡 = 𝑒𝑗𝜔𝑡𝜑 0 .

• Defining the limit cycle 𝛄 𝜑 which we estimate as 

a Fourier series.

• With the condition that 𝜑 0 is the phase of 𝐱 0 .

𝐱 𝑡 ≈ 𝛄 𝜑 𝑡

𝐱 𝑡

𝛄 𝜑 𝑡

ො𝛄(𝜃) ∶= ෍

𝑚=−𝑁𝑜𝑟𝑑

𝑁𝑜𝑟𝑑

𝑐𝑚𝑒
𝑗𝑚𝜃



1. The Limit Cycle
• The prediction ෤𝐱0𝑘 𝑛 + 𝑠 from some initial state and phase ො𝐱𝑘 𝑛 , ො𝜑𝑘 𝑛 by advancing 

𝑠 sample points into the future, consists of advancing the limit cycle by the phase 

difference. ෤𝐱0
𝑘 𝑛 + 𝑠 = ො𝛄 𝑒𝑗𝜔𝑠Δ𝑡 ො𝜑𝑘 𝑛



2. Data-Driven Floquet Analysis

• In our case the system 𝐱 𝑡 isn’t always at the 

limit cycle so we assume some perturbations 𝛅 𝑡

from the limit cycle 𝛄 𝜑 :

• In practice we estimated perturbations 

෡𝛅 𝑛
𝑘

as the difference from the limit cycle:

𝐱 𝑡 ≈ 𝛄 𝜑 + 𝛅 𝑡

𝐱 𝑡

𝛄 𝜑 𝑡

𝛅 𝑡෡𝛅𝑘 𝑛 ≔ ො𝐱𝑘 𝑛 − ො𝛄 ො𝜑𝑘 𝑛



2. Floquet Theory
• Floquet theory governs linear time periodic (LTP) differential equations.

• It defines a flow matrix that determines the behavior of solutions near the limit 

cycle [2].

• The flow matrix is estimated as ෡𝐌 𝜃, 𝑛 using LLS of pairs of perturbations 

෡𝛅 𝑛 , ෡𝛅 𝑛 + 𝑠
𝑘

for multiple paths 𝑠 samples apart.

[2] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and 
bifurcations of vector fields. Springer Science & Business Media; 2013 Nov 21. 24-25

ቐ
𝛅 𝑡 = 𝐌𝜃 𝑡 𝛅 0

𝜑 𝑡 = 𝑒𝑗𝜔𝑡 ณ𝜃
𝜑 0

S. Revzen M



2. Data-Driven 
Floquet Analysis

• The propagating perturbation ෡𝐌 𝜃, 𝑠 ෡𝛅𝑘 𝑛 is now added to the prediction from before:

෤𝐱1
𝑘 𝑛 + 𝑠 = ො𝛄 𝑒𝑗𝜔𝑠Δ𝑡 ො𝜑𝑘 𝑛 + ෡𝐌 𝜃, 𝑠 ෡𝛅𝑘 𝑛



3. Subsystem Phase

• When looking at data and modeling as an 

oscillator we can model partial data as 

an oscillating subsystem.

• We chose a set of natural subsystems –

the robot legs.

• Whether this is a sufficient model is the 

main question.

Revzen S, Koditschek DE, Full RJ. Towards testable neuromechanical 

control architectures for running. Progress in motor control: a 
multidisciplinary perspective. 2009:25-55.



3. Coupled Phase Oscillator Model

• Instead of modeling the entire path we only model the phase states of each 

subsystem using a coupling term and stochastic noise:

• For simplicity we use phases as real numbers from now on.

• 𝑁𝑠 is the number of subsystems (number of legs).

ሶ𝜙𝑖 𝑡 = 𝜔 +෍

𝑗=1

𝑁𝑠

𝑐𝑗𝑖 𝜑 𝜙𝑗 𝑡 − 𝜙𝑖 𝑡 + 𝑑𝜈

Revzen S. and Kvalheim M. Locomotion as an Oscillator. 
Bioinspired Legged Locomotion. 2017:97-110



3. Coupled Phase Oscillator Model

• Using a bit of algebra, we can convert the equation into vector form for all legs 

where each element is the “relative phase” 𝛽𝑖 t = 𝜙𝑖 𝑡 − ∠𝜑:  ሶ𝛃 𝑡 ≈ 𝐀 𝜑 𝛃 𝑡

• With Floquet solution: 𝛃 𝑡 = 𝐅𝜃 t 𝛃 0 .

• 𝐅 represents a flow matrix of phase perturbation from global phase, which we can 

estimate similarly to DDFA as 𝐅 𝜃, 𝑠 .

Revzen S. and Kvalheim M. Locomotion as an Oscillator. 
Bioinspired Legged Locomotion. 2017:97-110



3. Coupled Phase 
Oscillator Model

• The leg phases are then estimated as:

• Where ෥𝛗𝑘 = [ ෨𝜙1
𝑘, … , ෨𝜙𝑁𝑠

𝑘 ]

• We then similarly use 𝑁𝑠 Fourier series ෠𝜓𝑖 as 

limit cycle estimations of each leg where 

෤𝐱2,𝑖
𝑘 𝑛 + 𝑠 = ෠𝜓𝑖

෨𝜙𝑖
𝑘 𝑛 + 𝑠 : 

෥𝛗𝑘 𝑛 + 𝑠 = 𝜔𝑠Δ𝑡 + ∠ ො𝜑𝑘 𝑛 + ෠𝐅 𝜃, 𝑠 ෡𝛃𝑘 𝑛

෤𝐱2
𝑘 𝑛 + 𝑠 = ෡𝛙 ෥𝛗𝑘 𝑛 + 𝑠



Model Comparison



Model Comparison



Main Research 
Contributions

Produced a synthetic dataset of 
motions based on coupled Hopf 
oscillators.

Chose the random perturbation 
parameters to mimic statistics 
from real robot’s noisy data.

Compared our coupled-
oscillators model to a phase 
oscillator driving a limit cycle; and 
a Data-Driven Floquet Analysis 
model.

The 3 Models

Synthetic Data

Noise Parameter Identification



Synthetic Data



Dataset

• Research is based on data collected from Octobot – an 8-

legged modular robot developed by our collaborators at 

the BIRDS lab at the University of Michigan.

• This was used to create a synthetic dataset as a tool for 

comparing models.



Why Synthetic Data?

• Parameters are not known for real data (such as coupling).

• Gives us a ground truth to compare to.

• Allows for easy configuration of working environment.



Main Research 
Contributions

Produced a synthetic dataset of 
motions based on coupled Hopf 
oscillators.

Chose the random perturbation 
parameters to mimic statistics 
from real robot’s noisy data.
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oscillators model to a phase 
oscillator driving a limit cycle; and 
a Data-Driven Floquet Analysis 
model.
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Noise Parameter 
Identification



Why Extract Noise Parameters?

• Statistical power depends on noise.

• Too little noise – not enough perturbations.

• Too much noise – not enough correlation.

• Parameters such as phase standard deviation should track real-world data.



Noise Parameter Identification

• Phase is a circular variable: usual mean and variance cannot be used.

• We estimated noise parameters using directional statistics.

• Directional statistics – statistics of directions and rotations on a unit circle.



Main Research 
Contributions

Produced a synthetic dataset of 
motions based on coupled Hopf 
oscillators.

Chose the random perturbation 
parameters to mimic statistics 
from real robot’s noisy data.

Compared our coupled-
oscillators model to a phase 
oscillator driving a limit cycle; and 
a Data-Driven Floquet Analysis 
model.
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Results



Model Comparison
Relative Remaining Variance – variance of 

prediction residuals relative to variance of 

data (from limit cycle) [4].

[4] H.M. Maus et. al., 2015, Constructing predictive models of 
human running



Model Comparison Average RRV

Relative Remaining Variance – variance of 

prediction residuals relative to variance of data 

(from limit cycle)[4]. [4] H.M. Maus et. al., 2015, Constructing predictive models of 
human running

Model Phase RRV Radius RRV Cartesian RRV

Limit Cycle 0.273 -0.013 -0.038

DDFA 0.764 0.334 0.578

Coupled Oscillator 0.766 0.008 0.515



Summary

• Multi-legged robots can be modeled as both a phase oscillator or as 

subsystems of coupled phase oscillators.

• In theory model of coupled phase-oscillators can be as good as full Floquet 

analysis.

• There is a range of parameters that the robot works with for our model to be 

accurate. 



Thank You



Questions



Mathematical Background



Floquet Theory
• Given a LTP system with period 𝑇: ሶ𝐱 𝑡 = 𝐀 𝑡 𝐱 𝑡 , 𝐀 𝑡 + 𝑇 = 𝐀 𝑡

• For a fundamental solution matrix 𝐗 𝑡 of the system: 

𝐗 𝑡 + 𝑇 = 𝐗 𝑡 𝐗 0 −1𝐗 𝑇

• In the theory of oscillators 𝐗(𝑇) is called the Monodromy matrix with its 

eigenvalues the characteristic multipliers determining stability of the system.



Floquet Theory

• There exists a periodic matrix 𝐏 𝑡 with period 𝑇, and constant matrix 𝐑 both non-

singular such that:

• There also exists a coordinate transformation with periodic matrix 𝐙 𝑡 :

𝐲 𝑡 = 𝐙 𝑡 𝐱(𝑡)

𝐗 𝑡 = 𝐏 𝑡 𝑒𝐑𝑡



Floquet Theory

• This allows for the creation of new coordinates based on the Floquet multipliers 

that is periodic and coincides with the system limit cycle.

• Each Floquet multiplier affects the magnitude of perturbation in the direction of 

the matching eigenvector. Thus, operating as modes.



Floquet Theory

• Our system has a global phase 𝜑 𝑡 such that 𝜑 𝑡 = 𝑒𝑖𝜔𝑡𝜑 0 , defining the limit 

cycle 𝛄 𝜑 𝑡 .

• In our case the system 𝐱 𝑡 isn’t always at the limit cycle so we assume some 

perturbations 𝛅 𝑡 from the limit cycle 𝛄 𝜑 𝑡 :

• With the condition that 𝜑 0 is the phase of 𝐱 0 .

𝐱 𝑡 = 𝛄 𝜑 𝑡 + 𝛅 𝑡



Floquet Theory

• Thus, our dynamical system can be defined as:

• For some non-singular matrix 𝐇 𝜑 .

𝑑𝜑 𝑡 = 𝑖𝜔𝜑 𝑡 𝑑𝑡
𝑑𝛅 𝑡 = 𝐇 𝜑 𝛅 𝑡 𝑑𝑡



Floquet Theory

• Let 𝐅 be the fundamental solution matrix to the LTP ሶ𝐅 = 𝐇 𝑒𝑖𝜔𝑡 𝐅, 𝐅 0 = 𝐈 then:

• Where we define: 𝐅𝜃 𝑡 ≔ 𝐅 𝑡 +
arg 𝜃

𝜔
𝐅−1

arg 𝜃

𝜔

• In practice we need to estimate these equations using a DDFA.

𝜑 𝑡 = 𝑒𝑖𝜔𝑡𝜑 0
𝛅 𝑡 = 𝐅𝜑 0 𝑡 𝛅 0



General Theory

• We identify the 1-dimensional torus 𝕋1 with the circle 𝒮1, and consider those 

to be the complex unit circle 𝑧 ∈ ℂ 𝑠. 𝑡. 𝑧 = 1 .



Modeling

• A sufficiently smooth dynamical system Φ:ℝ × 𝐗 → 𝐗.

• For 𝑡, 𝑠 ∈ ℝ, 𝐱 ∈ 𝐗: Φ0𝐱 = 𝐱, Φ𝑡 ∘ Φ𝑠 𝐱 = Φt+s𝐱

• Assume it is an oscillator therefore de define 4 different parameters with the 

system.



Modeling

1. A “global phase” 𝜑: 𝐗 → 𝕋1 and 𝜔 > 0 such that for all 𝑡, 𝐱: 𝜑 Φ𝑡𝐱 = 𝑒𝑗𝜔𝑡𝜑 𝐱

This phase is not unique.

2. A “limit cycle” 𝛄: 𝕋1 → 𝚪 ⊆ 𝐗 such that: 𝛄 𝑒𝑗𝜔𝑡 = Φ𝑡 𝛄 1 and 𝛄 is onto.

3. A “phase projection” 𝐏: 𝐗 → 𝚪 such that 𝐏 𝐱 ≔ 𝛄 𝜑 𝐱 .

It follows that for all 𝑡: 𝐏 ∘ Φ𝑡 = Φ𝑡 ∘ 𝐏.

4. The limit cycle is exponentially stable. There exits 𝛼 > 0 such that for all 𝑡, 𝐱:

Φ𝑡𝐱 − 𝐏 Φ𝑡𝐱 < 𝑒−𝛼𝑡 𝐱 − 𝐏 𝐱



Data Driven Framework

• To obtain a model of ΦΔ𝑡 we use pairs of sampled states, where Δ𝑡 is the 

sampling interval.

• We denote at time 𝑛Δ𝑡 the state on trajectory 𝑘 as ො𝐱𝑘 𝑛 .

• An ideal (noise-free) dataset is assumed to be pairs ො𝐱𝑘 𝑛 , ො𝐱𝑘 𝑛 + 1 .

• We assume the actual data has a memoryless Gaussian noise process 𝜈 that 

is added to the time evolution: Φ∗ ≔ ΦΔ𝑡 + 𝜈.



Phase Estimation

• We rely on a phase estimation method, which given the dataset ො𝐱𝑘 𝑛

provides an estimated phase 𝜑𝑘 𝑛 for each data point.

• The phase estimation must be consistent across multiple trajectories in the 

dataset.

• We used the Phaser algorithm[1] which estimates the instantaneous phase 

for each sample point in a given noisy system dataset.

[1] Revzen S, Guckenheimer JM. Estimating the phase of synchronized oscillators. Physical Review E—Statistical, 
Nonlinear, and Soft Matter Physics. 2008 Nov;78(5):051907.



Assumptions



DDFA



DDFA



Coupled Phase Oscillator Model

• Instead of modeling the entire path we only model the phase of each leg using a 

coupling term and stochastic noise:

• For simplicity we use phases as real numbers from now on.

• 𝑁𝑠 is the number of legs.

ሶ𝜙𝑖 𝑡 = 𝜔 +෍

𝑗=1

𝑁𝑠

𝑐𝑗𝑖(𝜑) 𝜙𝑗 𝑡 − 𝜙𝑖 𝑡 + 𝑑𝜈

Revzen S. and Kvalheim M. Locomotion as an Oscillator. 
Bioinspired Legged Locomotion. 2017:97-110



Coupled Phase Oscillator Model

• We define the residual phases 𝛽𝑖 𝑡 ≔ 𝜙𝑖 𝑡 − ∠𝜑 𝑡 where the global phase is 

𝜑 𝑡 = 𝑒𝑗𝜔𝑡𝜑 0 such that:

• Rewriting:

ሶ𝛽𝑖 𝑡 =෍

𝑗=1

𝑁𝑠

𝑐𝑗𝑖 𝜑 𝛽𝑗 𝑡 − 𝛽𝑖 𝑡 + 𝑑𝜈

ሶ𝛽𝑖 𝑡 =෍

𝑗=1

𝑁𝑠

𝑐𝑗𝑖 𝜑 𝛽𝑗 𝑡 − 𝛽𝑖 𝑡 ෍

𝑗=1

𝑁𝑠

𝑐𝑗𝑖 𝜑 + 𝑑𝜈



Coupled Phase Oscillator Model

• Let us define the two coupling matrices 𝐂 𝜑 ,𝐃 𝜑 , 𝐀 𝜑 :

• Which gives the equation: ሶ𝛃 𝑡 = 𝐀 𝜑 𝛃 𝑡

𝐂 𝜑 =

𝑐11 𝜑 … 𝑐1𝑁𝑠 𝜑

⋮ ⋱ ⋮
𝑐𝑁𝑠1 𝜑 … 𝑐𝑁𝑠𝑁𝑠 𝜑

𝐃 =

෍

𝑗

𝑁𝑠

𝑐1𝑗 𝜑 0 0

0 ⋱ 0

0 0 ෍

𝑗

𝑁𝑠

𝑐𝑁𝑠𝑗 𝜑

𝐀 𝜑 = 𝐂𝑇 𝜑 − 𝐃 𝜑



Coupled Phase Oscillator Model

• We now have an LTP system: ሶ𝛃 𝑡 ≈ 𝐀 𝜑 𝛃 𝑡

• Solving using Floquet theory: 𝛃 𝑡 = 𝐅 𝜃, 𝑡 𝛃 0

• Where we have a matrix 𝐅 𝜃, 𝑡 which is the flow matrix that is solved according to 

Floquet theory.



Extra Slides



1. The Limit Cycle

For sample paths of a stochastic differential equation: 

• ො𝐱 𝑛 𝑘 - the 𝑘 = 1,… ,𝑁 sampled paths, with 𝑛 = 1,… , 𝑇𝑘 sample points for each 

path, a sampling interval Δ𝑡, and a sufficiently tame noise process.

• ො𝜑 𝑛 𝑘 - corresponding instantaneous phases.

• ො𝛄 ො𝜑 - estimated limit cycle as a fitted Fourier series of order 𝑁𝑜𝑟𝑑.

ො𝛄(𝜃) ∶= ෍

𝑚=−𝑁𝑜𝑟𝑑

𝑁𝑜𝑟𝑑

𝑐𝑚𝑒
𝑗𝑚𝜃



2. Data-Driven Floquet Analysis

• Our dynamical system can be defined using 𝜑 𝑡 and 𝛅(𝑡) with 𝐌𝜃 𝑡 the matrix 

representing the flow of perturbations from some initial phase 𝜃.

ቐ
𝛅 𝑡 = 𝐌𝜃 𝑡 𝛅 0

𝜑 𝑡 = 𝑒𝑗𝜔𝑡 ณ𝜃
𝜑 0

𝐌𝜃 𝑡 ≔ 𝐌 𝑡 +
arg 𝜃

𝜔
𝐌−1

arg 𝜃

𝜔

S. Revzen
M



• We use a “Hopf” oscillator to simulate the motion of each robot leg.

• Dynamics are governed by the following equations in polar coordinates:

• Here the phase of each subsystem is coupled with all other subsystems.

ሶ𝑟𝑖 𝑡 = 𝛼 1 − 𝑟𝑖 𝑡 + ሶ𝜂𝑖 𝜃𝑖 𝑡 + 𝛿𝜈𝑟

ሶ𝜃𝑖 𝑡 = 𝜔 +෍

𝑗=1

𝑁𝑠

𝐶𝑖𝑗 𝜃𝑗 𝑡 − 𝜃𝑖 𝑡 + 𝛿𝜈𝜃

Synthetic Data



Synthetic Data
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