Modelling Surface Wind for Ram-air Parachute Piloting Simulator

MSc Student Maayan Shimoni

Supervision by Dr. Anna Clarke and Prof. Ian Jacobi

Department of Aerospace Engineering, Technion

March 20, 2025

Span size~3 m Chord of cell 1 m Free Atmosphere ABL ~ 1 km U Eddy Eddy $U(z) = \frac{u_{\tau}}{\kappa} \ln \frac{z}{z_0}$ ASL ~ 0.1 km Landing Length~5 m ~30 s $f = \frac{U}{\lambda} = \frac{10}{0.5} = 20 \ [Hz]$ 7 TECHNION Israel Institute of Technology

Flying Through the ASL

Modelling Mean Wind in the ASL

Mean velocity profile: u = U + u

Obukhov et al. (1946), Monin and Obukhov (1954)

Modelling Turbulence

Higher order moments: u = U + u

Inner-Outer Interaction Model

Mathis et al. (2011) Universal signal Large-scale outer signal The signal that would exist The signal obtained from in the absence of any largeouter location scale footprint or modulation. measurement $u^{+}(z_{i}) = u^{*}(z) \cdot \{1 + \beta \cdot u_{L}^{+}(z_{0}, \theta_{L})\} + \alpha \cdot u_{L}^{+}(z_{0}, \theta_{L})$ Amplitude Linear superposition modulate u^* of large scales Predicted near-wall signatures

> TECHNION Israel Institute of Technology

Parameters Determination

Parameters Determination

Inner Outer Interaction Model Predictions in Thermally Neutral Boundary Layers

 $Re_{\tau} = \frac{u_{\tau}\delta}{v}$

Inner-Outer Model in the ASL

CASES99

Measurements used:

• u, v, w, θ 20 Hz, z = 0.5, 5, 10, 20, 30, 40, 50, 55 [m]

Processing stages:

- Hourly sections
- Dirction correction: $u_w = u_a \cos(\alpha_m) + v_a \sin(\alpha_m)$
- De-trending, $\delta = 150 \text{ [m]}$, $\lambda_{x,\text{detrending}} = 20\delta$

•
$$u_{\tau} = \overline{u_w w}$$
, $\frac{z}{L} = -\frac{zkg\overline{w\theta}}{u_{\tau}^3\overline{\theta}}$, both calculated at $z = 5$ [m]

Poulos et al. (2002), Drobinski et al. (2004)

Stability Dependance of the Large-Scale Model Parameters

Stability Dependance of the Small-Scale Model Parameters

Prediction using the Inner-Outer Model- statistics

	Model parameters determination	Model validation
z/L	$0.159 \rightarrow \alpha, \beta, \theta, u^*$	0.162
Time and date (CST)	24-Oct-1999 22:00:00	27-Oct-1999 21:00:00

with AM: $u^+(z_i) = u^*(z) \cdot \{1 + \beta \cdot u_L^+(z_0, \theta_L)\} + \alpha \cdot u_L^+(z_0, \theta_L)$ no AM: $u^+(z_i) = u^*(z) \cdot \{1 + 0 \cdot u_L^+(z_0, \theta_L)\} + \alpha \cdot u_L^+(z_0, \theta_L)$

Israel Institute of Technology

Prediction using the Inner-Outer Model- spectra

Israel Institute of Technology

Conclusion

- Thermal stability affects the inner-outer model parameters. Stability suppresses mixing, limiting large-scale correlation.
- Spectra and moments up to fifth order are predicted well if the calibration signal have approximately the same stability condition.
- Amplitude modulation effect is expressed in the odd moments of turbulence.

Thank you!

