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PID-autotuning problem

The PID controller is widely used in engineering, which requires parameter design; PID
autotuning is an essential method in this context.
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Relay feedback system

For the preparation of matrix analysis,

G(s) = G(z)

u(t) J_ o) y(t)

—1

Figure 1: Discrete-time relay feedback system with linear system G(z), z € C.
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For the preparation of matrix analysis,

G(s) = G(z)
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Figure 1: Discrete-time relay feedback system with linear system G(z), z € C.

Through the discrete convolution operator (Cy(u)(t) := (g * u)(t)), this feedback follows

u(t) = —Cq(sign(u))(t), teZ.
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Equivalence problem

In the discrete-time domain, the infinite operator analysis can be changed into a finite operator.

Convolution operator form

u(t) = —Cy(sign(w))(t), t€Z,

where C, is infinite dimensional.
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Equivalence problem

In the discrete-time domain, the infinite operator analysis can be changed into a finite operator.

Convolution operator form Circulant matrix form
u(t) = —Cy(sign(u))(t), teZ, = u = —ngsign(up),
where C, is infinite dimensional. where ng is finite dimensional.
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Equivalence problem

In the discrete-time domain, the infinite operator analysis can be changed into a finite operator.

Convolution operator form

u(t) = —Cy(sign(w))(t), t€Z,

where C, is infinite dimensional.

u(0) ?}IZ

u(1 g

up _ ( ) , ng _ 2
u(P—1) 9

Circulant matrix form

u = —ngsign(up),

where ng is finite dimensional.

eRPP gl = Y gli—1+4P).

j=—o0
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Assumptions and our goals

In this relay feedback system, we study the sustained unimodal oscillations in discrete-time
relay feedback systems having the following input-output property.
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Assumptions and our goals

In this relay feedback system, we study the sustained unimodal oscillations in discrete-time
relay feedback systems having the following input-output property.
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We focus on the following questions:

@ Necessary conditions for self-sustained oscillations

@ Absence of self-oscillations

@ Period of self-oscillations
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Unimodality and variation

Goal: Describing unimodality in periodic sequence in math.
@ Variation of a vector: For a vector v € R",

S7(v) := # of sign changes (after deleting zeros)

ST (v) := # of maximal sign changes (after replacing zeros by +1 or -1)
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Unimodality and variation

Goal: Describing unimodality in periodic sequence in math.
@ Variation of a vector: For a vector v € R",

S7(v) := # of sign changes (after deleting zeros)

1 A T
50 I
-1 \

6 7

r'y

3 4

[ [
A

N @
»—|

1

Ol @

ST (v) := # of maximal sign changes (after replacing zeros by +1 or -1)
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@ Cyclic variation of a vector: For a vector v € R", * represents both — and +,
S5 (v) = S*(v) when S*(v) even,
S*(v)+1 when S*(v) odd.
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Unimodality and variation

Goal: Describing unimodality in periodic sequence in math.
Observation: The fundamental period of a unimodal oscillation.
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Unimodality and variation

Goal: Describing unimodality in periodic sequence in math.
Observation: The fundamental period of a unimodal oscillation.

choose one period
=

Note that the "variation" of its fundamental period under any vertical shift is at most two.
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Invariance and variation
Goal: Find something invariant in a periodic oscillation.

Observation: Cyclic variation of any one period is invariant.

@ Invariance and unimodality
» u is unimodal, i.e.,

ST (Au’) =2 and SF(u”) =2
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Main Results

1. Necessary conditions for self-sustained oscillations
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Main Results

2. Absence of self-oscillations

o sign(uf) =[1,1,1,-1,-1,-1]"
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Main Results

2. Absence of self-oscillations

o sign(uf) =[1,1,1,-1,-1,-1]"

16— “ : _ ub = —ngsign(up)
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g(0) >0 = u® # —ngsign(up) for any P.
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Main Results
3. Self-oscillations under time delays

G(z) = z~P1Gy(2) where P; > 0

u(t) J_ () ()

_1 Z—Pd

Figure 2: A DT Relay Feedback System with delay module.
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Figure 2: A DT Relay Feedback System with delay module.
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Main Results

3. Self-oscillations under time delays: the bound for the self-oscillation

@ P; - delay time

@ P, - main part of response, i.e., arg minp, Ef):d;fsfl 9(i) > 32 p, 4 p, 9(1)

Ly Pd * ® l‘l ° b

B [Ilr..
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@ P; - delay time

@ P, - main part of response, i.e., arg minp, Ef:d;fsfl 9(i) > 32 p, 4 p, 9(1)
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Corollary

3. Self-oscillations under time delays: other self-oscillations
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If a self-oscillation with P = 2Py is
admitted.
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Corollary

3. Self-oscillations under time delays: the convex impulse response
@ P, - delay time

@ ¢(t) - convex function
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Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system
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20/20



Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system
depend on

e Circulant matrix/ impulse response.

@ Time delay.

20/20



Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system
depend on

e Circulant matrix/ impulse response.

@ Time delay.

In the future, it would also be interesting to explore

@ Higher variation oscillations.

@ Non-monotone impulse responses.
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