Self-sustained oscillations in discrete-time relay feedback systems

Kang Tong Christian Grussler Michelle S. Chong

Technion - Israel Institute of Technology Eindhoven University of Technology

IAAC Graduate Students in Systems and Control, June 2025

Outline

- 2 Self-oscillations and variation
- 3 Main Result

Outline

- 2 Self-oscillations and variation
- 3 Main Result
- 4 Concluding remarks

PID-autotuning problem

The PID controller is widely used in engineering, which requires parameter design; *PID autotuning* is an essential method in this context.

PID-autotuning problem

The PID controller is widely used in engineering, which requires parameter design; *PID autotuning* is an essential method in this context.

Relay feedback system

For the preparation of matrix analysis,

$$G(s) \implies G(z)$$

Figure 1: Discrete-time relay feedback system with linear system G(z), $z \in \mathbb{C}$.

Relay feedback system

For the preparation of matrix analysis,

$$G(s) \implies G(z)$$

Figure 1: Discrete-time relay feedback system with linear system G(z), $z \in \mathbb{C}$.

Through the discrete convolution operator ($C_g(u)(t) := (g * u)(t)$), this feedback follows

$$u(t) = -\mathcal{C}_g(\operatorname{sign}(u))(t), \quad t \in \mathbb{Z}.$$

Equivalence problem

In the discrete-time domain, the *infinite* operator analysis can be changed into a *finite* operator.

Convolution operator form

$$\begin{split} u(t) &= -\mathcal{C}_g(\mathrm{sign}(u))(t), \quad t \in \mathbb{Z}, \\ \text{where } \mathcal{C}_g \text{ is infinite dimensional.} \end{split}$$

Equivalence problem

In the discrete-time domain, the *infinite* operator analysis can be changed into a *finite* operator.

Convolution operator form

$$u(t) = -C_g(sign(u))(t), \quad t \in \mathbb{Z},$$

where C_g is infinite dimensional.

 \Rightarrow

Circulant matrix form	
$u^P = -H_{\overline{g}^P} \mathrm{sign}(u^P),$	
where $H_{\overline{g}^P}$ is finite dimensional.	

Equivalence problem

In the discrete-time domain, the *infinite* operator analysis can be changed into a *finite* operator.

Convolution operator formCirculant matrix form
$$u(t) = -C_g(\operatorname{sign}(u))(t), \quad t \in \mathbb{Z},$$

where C_g is infinite dimensional. \Rightarrow $u^P = -H_{\overline{g}^P}\operatorname{sign}(u^P),$
where $H_{\overline{g}^P}$ is finite dimensional. $[u(0)]$ $[\overline{g}_1^P \quad \overline{g}_P^P \quad \cdots \quad \overline{g}_2^P]$

$$u^{P} = \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(P-1) \end{bmatrix}, \ H_{\overline{g}^{P}} := \begin{bmatrix} \overline{g}_{1}^{P} & \overline{g}_{P}^{P} & \cdots & \overline{g}_{2}^{P} \\ \overline{g}_{2}^{P} & \overline{g}_{1}^{P} & \cdots & \overline{g}_{3}^{P} \\ \vdots & \vdots & & \vdots \\ \overline{g}_{P}^{P} & \overline{g}_{P-1}^{P} & \cdots & \overline{g}_{1}^{P} \end{bmatrix} \in \mathbb{R}^{P \times P}, \ \overline{g}_{i}^{P} := \sum_{j=-\infty}^{\infty} g(i-1+jP).$$

Assumptions and our goals

In this relay feedback system, we study the *sustained unimodal oscillations* in discrete-time relay feedback systems having the following input-output property.

Assumptions and our goals

In this relay feedback system, we study the *sustained unimodal oscillations* in discrete-time relay feedback systems having the following input-output property.

Assumptions and our goals

In this relay feedback system, we study the *sustained unimodal oscillations* in discrete-time relay feedback systems having the following input-output property.

We focus on the following questions:

- Necessary conditions for self-sustained oscillations
- Absence of self-oscillations
- Period of self-oscillations

2 Self-oscillations and variation

3 Main Result

4 Concluding remarks

Goal: Describing unimodality in periodic sequence in math.

• Variation of a vector: For a vector $v \in \mathbb{R}^n$,

 $S^-(v):=\#$ of sign changes (after deleting zeros)

 $S^+(v) := \#$ of maximal sign changes (after replacing zeros by +1 or -1)

Goal: Describing unimodality in periodic sequence in math.

• Variation of a vector: For a vector $v \in \mathbb{R}^n$,

 $S^-(v) := \#$ of sign changes (after deleting zeros)

 $S^+(v) := \#$ of maximal sign changes (after replacing zeros by +1 or -1)

• Cyclic variation of a vector: For a vector $v \in \mathbb{R}^n$, * represents both - and +,

$$S^*_c(v) := \begin{cases} S^*(v) & \text{ when } S^*(v) \text{ even}, \\ S^*(v) + 1 & \text{ when } S^*(v) \text{ odd}. \end{cases}$$

Note that the "variation" of its fundamental period under any vertical shift is at most two.

Invariance and variation

Goal: Find something invariant in a periodic oscillation. **Observation:** Cyclic variation of any one period is invariant.

- Invariance and unimodality
- ▶ *u* is unimodal, i.e.,

$$S_c^-(\Delta_c u^P) = 2$$
 and $S_c^+(u^P) = 2$

Invariance and variation

Goal: Find something invariant in a periodic oscillation. **Observation:** Cyclic variation of any one period is invariant.

* ↓

- Invariance and unimodality
- ► *u* is unimodal, i.e.,

$$S_c^-(\Delta_c u^P) = 2$$
 and $S_c^+(u^P) = 2$

▶ g is strictly monotonic decreasing, i.e.,

$$S^-_c(\Delta_c u^P)=2 \text{ and } S^+_c(u^P)=2$$

Invariance and variation

Goal: Find something invariant in a periodic oscillation. **Observation:** Cyclic variation of any one period is invariant.

- Invariance and unimodality
- ▶ *u* is unimodal, i.e.,

$$S^-_c(\Delta_c u^P)=2 \text{ and } S^+_c(u^P)=2$$

▶ g is strictly monotonic decreasing, i.e.,

$$S^-_c(\Delta_c u^P)=2$$
 and $S^+_c(u^P)=2$

Outline

1 Introduction

2 Self-oscillations and variation

3 Main Result

4 Concluding remarks

1. Necessary conditions for self-sustained oscillations

1. Necessary conditions for self-sustained oscillations

1. Necessary conditions for self-sustained oscillations

 \implies the number of positive elements = the number of negative elements

2. Absence of self-oscillations

 \Rightarrow

$$\begin{split} u^6 &= -H_{\overline{g}^P} \text{sign}(u^P) \\ &= [-0.22, -1.1, -1.54, 0.22, 1.1, 1.54]^\top \end{split}$$

 $g(0) > 0 \Longrightarrow u^P \neq -H_{\overline{g}^P} \operatorname{sign}(u^P)$ for any P.

3. Self-oscillations under time delays

$$G(z)=z^{-P_d}G_0(z)$$
 where $P_d\geq 0$

Figure 2: A DT Relay Feedback System with delay module.

3. Self-oscillations under time delays

$$G(z)=z^{-P_d}G_0(z)$$
 where $P_d\geq 0$

Figure 2: A DT Relay Feedback System with delay module.

3. Self-oscillations under time delays

$$G(z)=z^{-P_d}G_0(z)$$
 where $P_d\geq 0$

Figure 2: A DT Relay Feedback System with delay module.

- 3. Self-oscillations under time delays: the bound for the self-oscillation
 - P_d delay time
 - P_s main part of response, i.e., $\arg \min_{P_s} \sum_{i=P_d}^{P_d+P_s-1} g(i) > \sum_{i=P_d+P_s}^{\infty} g(i)$

- 3. Self-oscillations under time delays: the bound for the self-oscillation
 - P_d delay time
 - P_s main part of response, i.e., $\arg \min_{P_s} \sum_{i=P_d}^{P_d+P_s-1} g(i) > \sum_{i=P_d+P_s}^{\infty} g(i)$

 $\Rightarrow \quad 2P_d \le P \le 2(P_d + P_s).$

3. Self-oscillations under time delays: other self-oscillations

3. Self-oscillations under time delays: other self-oscillations

If a self-oscillation with ${\cal P}=2{\cal P}_d$ is admitted.

3. Self-oscillations under time delays: other self-oscillations

If a self-oscillation with $P = 2P_d$ is admitted.

Then a self-oscillation with $P = \frac{2P_d}{2n+1}$ is also admitted.

- 3. Self-oscillations under time delays: the convex impulse response
 - P_d delay time
 - $\bullet \ g(t)$ convex function

- 3. Self-oscillations under time delays: the convex impulse response
 - P_d delay time
 - $\bullet \ g(t)$ convex function

 $\Rightarrow \quad 2P_d \le P \le 4P_d + 2.$

Outline

1 Introduction

- 2 Self-oscillations and variation
- 3 Main Result

Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system depend on $% \left({{{\left[{{{c_{1}}} \right]}_{i}}}_{i}} \right)$

Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system depend on $% \left({{{\left[{{{c_{1}}} \right]}_{i}}}_{i}} \right)$

- Circulant matrix/ impulse response.
- Time delay.

Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system depend on

- Circulant matrix/ impulse response.
- Time delay.

In the future, it would also be interesting to explore

- Higher variation oscillations.
- Non-monotone impulse responses.