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PID-autotuning problem

The PID controller is widely used in engineering, which requires parameter design; PID
autotuning is an essential method in this context.
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Relay feedback system
For the preparation of matrix analysis,

G(s) =⇒ G(z)

G(z)

−1

u(t) y(t)

Figure 1: Discrete-time relay feedback system with linear system G(z), z ∈ C.

Through the discrete convolution operator (Cg(u)(t) := (g ∗ u)(t)), this feedback follows

u(t) = −Cg(sign(u))(t), t ∈ Z.
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Equivalence problem

In the discrete-time domain, the infinite operator analysis can be changed into a finite operator.

Convolution operator form

u(t) = −Cg(sign(u))(t), t ∈ Z,

where Cg is infinite dimensional.

⇒

Circulant matrix form

uP = −HgP sign(uP ),
where HgP is finite dimensional.

uP =


u(0)
u(1)

...
u(P − 1)

 , HgP :=


gP

1 gP
P · · · gP

2
gP

2 gP
1 · · · gP

3
...

...
...

gP
P gP

P −1 · · · gP
1

 ∈ RP ×P , gP
i :=

∞∑
j=−∞

g(i − 1 + jP ).
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Assumptions and our goals
In this relay feedback system, we study the sustained unimodal oscillations in discrete-time
relay feedback systems having the following input-output property.
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We focus on the following questions:

Necessary conditions for self-sustained oscillations

Absence of self-oscillations

Period of self-oscillations
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Unimodality and variation
Goal: Describing unimodality in periodic sequence in math.

Variation of a vector: For a vector v ∈ Rn,

S−(v) := # of sign changes (after deleting zeros)

1 2 3 4 5 6 7
−1

0
1

v i

S+(v) := # of maximal sign changes (after replacing zeros by +1 or -1)

1 2 3 4 5 6 7
−1

0
1

v i

Cyclic variation of a vector: For a vector v ∈ Rn, ∗ represents both − and +,

S∗
c (v) :=

{
S∗(v) when S∗(v) even,

S∗(v) + 1 when S∗(v) odd.
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Unimodality and variation

Goal: Describing unimodality in periodic sequence in math.
Observation: The fundamental period of a unimodal oscillation.

y

t

choose one period⇒

y

t
−

+

−

Note that the "variation" of its fundamental period under any vertical shift is at most two.
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Invariance and variation
Goal: Find something invariant in a periodic oscillation.
Observation: Cyclic variation of any one period is invariant.

Invariance and unimodality

▶ u is unimodal, i.e.,

S−
c (∆cuP ) = 2 and S+

c (uP ) = 2

0 5 10
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∗
⇓

▶ g is strictly monotonic decreasing, i.e.,

S−
c (∆cuP ) = 2 and S+

c (uP ) = 2
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Main Results

1. Necessary conditions for self-sustained oscillations
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=⇒ the number of positive elements = the number of negative elements
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Main Results

2. Absence of self-oscillations

sign(u6) = [1, 1, 1, −1, −1, −1]⊤

0 2 4
−1

0
1

g6 = [1, 0.5, 0.25, 0.12, 0.06, 0.03]⊤

0 2 4
0

0.5
1

⇒

u6 = −HgP sign(uP )

= [−0.22, −1.1, −1.54, 0.22, 1.1, 1.54]⊤

0 2 4
−1

0
1

g(0) > 0 =⇒ uP ̸= −HgP sign(uP ) for any P.
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Main Results
3. Self-oscillations under time delays

G(z) = z−PdG0(z) where Pd ≥ 0

G0(z)

z−Pd−1

u(t) ỹ(t)

Figure 2: A DT Relay Feedback System with delay module.
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Main Results

3. Self-oscillations under time delays: the bound for the self-oscillation

Pd - delay time

Ps - main part of response, i.e., arg minPs

∑Pd+Ps−1
i=Pd

g(i) >
∑∞

i=Pd+Ps
g(i)

0 2 4 6 8 10 12
0

0.5

1 Pd
Ps

⇒ 2Pd ≤ P ≤ 2(Pd + Ps).
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Corollary
3. Self-oscillations under time delays: other self-oscillations
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0
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Pd
Pd

If a self-oscillation with P = 2Pd is
admitted.

=⇒

0 5 10
−1

−0.5
0

0.5
1

Pd
2n+1 Pd

2n+1

Then a self-oscillation with P = 2Pd
2n+1 is

also admitted.
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Corollary

3. Self-oscillations under time delays: the convex impulse response

Pd - delay time

g(t) - convex function

0 2 4 6 8
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1 Pd

⇒ 2Pd ≤ P ≤ 4Pd + 2.
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Conclusion

The characteristics of self-sustained oscillation in the discrete-time relay feedback system
depend on

Circulant matrix/ impulse response.

Time delay.

In the future, it would also be interesting to explore

Higher variation oscillations.

Non-monotone impulse responses.
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