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Motivation
SAFETY is the highest priority for autonomous driving

Self—driving Waymo car kills dog 2111114 B Driver hits pedestrian, pushing her into path
3 : . of self-driving car in San Francisco
Imcreasing concern over robotaxis

THE U.S. DEPARTMENT OF TRANSPORTATION

Collision occurred as canine ran out from behind another STRATEGIC GOALS
car, but autonomous vehicle could not stop in time to avoid DOT's mission is “To deliver the world's leading transportation system, serving the American people and
Contact conomy through the safe, efficient, sustainable, and equitable movement of people and goods.”

STRATEGIC GOALS

SAFETY ECONOMIC STRENGTH EQuITY CLIMATE AND TRANSFORMATION ~ ORGANIZATIONAL
AND GLOBAL SUSTAINABILITY EXCELLENCE
COMPETITIVENESS

Woman dead
after being

struck by, fe—

self-driving -

Uber . The traffic and the environment in which
Autonomous Vehicles (AVs) operate are

dynamic and highly unpredictable.
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Introduction

Our journey from her

* A vehicle with fully autonomous lateral and longitudinal
actuation, equipped with a fully functional sensor stack

I<pOee(]

Direct Connection

CAN lateral and
longitudinal actuation

to here and beyond...

* Dynamic obstacle avoidance with
safety control for fast execution on
nonlinear systems
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Introduction

What is safe control? On the AV stack, where do we start?

Def: Controlled invariant sets

* If X is the set of admissible states Perception conte
. . . Behavior model (Finite State
e X;isa controlled invariant set (safe set) IFF e — I Sensor Fusion I Machine)
enicle sensor stac
° X L C XS | Camera | Lane 2D detection | | Path PI
. ath Planning
 Vx € X;,3u such that x;41 € X; ™ Lidar | Segmentation 3D detection .
| GNSS/IMU | | Traffic Environment Classification Waypoint Navigation
Motion Control (MPC controller)
Vv2X
X l l | Traffic Environment Measurement |

HEEFOINRR | | Safe Constraints

Vehicle localization and orientation
| HD Maps

At the controller
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Model Predictive Controller (MPC)

Why MPC and not any other controller?
1.
2.
3.

Optimal controller

Current State
measurements

' )

Explicit Constraint Handling
Predictive Capability

MPC Controller

A

Reference state output

Predicted output

x(t) o

[ —
Optimal control

n

t t+ Tsampling time

Apply first step of the optimal control u*(t + Tsampling time)
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MPC — Vehicle Dynamics

Y (North) [m] Vehicle Kinematics Model

A
A_
y
>
Mo X X (East) [m]

a: acceleration, and w: steering angle
lr: center to rear wheel, l¢: center to front wheel

t:time, dt: sampling time

THE OHIO STATE UNIVERSITY
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Discrete-time vehicle dynamics

pr = tan™" b, tan(,) (slip angle)
lr + 1,
Xpp1 = X +dt * v, * (cos(y, + B,))  xposition)
Ver1 = Ve + dt * v, x (sin(y, + B,)) (v position)
v
Ypaq = Y, +dt * l_t % sinB, (yaw angle)
r
Veyq = U +dt * a; (velocity)

States: Inputs: lg]

:c < ><



MPC - Constraints

Initial State Constraint: Constraint the initial state as the current position to predict the
next state

Initialize the states for the
Xo =X, Yo = Ve, Wo =Y, Vg =V «—m— optimization problem

State Bound Constraint: Constraint the minimum and maximum velocity

Vin < Vi < Vnpax «— Velocity bounds for safe navigation and collision
avoidance

Input Bound Constraint: Constrain the minimum and maximum steering and acceleration

Wmin < Wk < Wpax
Input bound constraints to impose feasible

Aring < A, < A ) .
min k Max - actuation on the vehicle

Input Rate Bound Constraint:

Ain — s < Ady < dprgy + Ag Input r.ate bound constraints to avmgl high
actuation rates and to have smooth inputs
Wmin — Ws < Aay < Wypq + W
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MPC — Cost Functions

What is reference set point?

It is the reference trajectory For simplicity in error tracking and easier integration with perception,
* Theset of GPS waypoints the AV is intended to follow we convert the Lat and Lon coordinates to cartesian coordinates -
* We get this information from a Global path planner East-North-Up (ENU)
12000 — Y I Y ENU Co?rdinate§ ‘ Y , Y
GPS Position
—-;_ ' ! 10000 & "
39°68'N Path - 8000 i
® Start Point Valleyview
® End Point E
g Lincoln Village z
ﬁ ocrmy LLROMO | - |
S aosTNE ol
0
2, 2000 i
39°56'N | i
CLUE L : T ASK USG5, A N5 U o B USO8 U303 0 4500 4000 3500 3000 2500 2000 1500 1000 500 O 500
83°08W  83°0TW  83°06W  83°05SW  83°04W East (m)
Longitude
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MPC — Cost Functions

Error-based cost function: Vehicle Kinematics Model

Y (North) [m]
Jx = Qx(xt - xref)QJYJ A

Jy = Qy(yt — Ve f) QJT, Reference trajectory O
Jv = Qv(vt - vref)Q;I;
]1/) — le(lpt - l/)ref)Qz[;
Ju = R(ugyq —ugR”

Jtotal = Jx +]y + Jy +]1/) + Ju e

Optimization Goal: Minimize the J;,;u

= Minimize the deviation from the reference mg X X (East) [m]

trajectory
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MPC formulation and its performance analysis

N-1 £ 2 2
J(xe,up) = 2}{_0 (||xt+k|t - x{-?—kltllQ + ”ut+k|t - ut+k_1|t||R)

Ji(x¢) = argmin p(x¢ypnie) +J(x¢, up) — Cost function
Ut:t+N-1|t

—— Vehicle dynamics
Such that x¢ 149 = f(xt+k|t; ut+k|t) Y

—— |nput Constraints
Umin < Ut+k|t < Umax

; _ - —— |nput rate constraints
Umin < Ut+k Ut+k-1 < Umax P

P(xt+N|t) e X —— Terminal cost

Feasibility

THE OHIO STATE UNIVERSITY
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Safety-Distance Constraints (MPC-DC)

Obstacle

Nonlinear MPC with u(x)
discrete-time safe-distance F===-=-- ->
constraints

. . . . 9 (Xl Xops)
Define a distance constraints function g(X;|X,5s) neems

where X, = (x(t),y(t)), Xops = (Xopssy Yops), and

Dgqre is the safety distance.

The vehicle has a safety radius, the obstacle has a safety
radius, and the safety is imposed through the constraints

THE OHIO STATE UNIVERSITY
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Safety Constraints — Control Barrier Function (CBF)

Define a function h: R™® — R, S is the closed safe set

For a nonlinear function x = f(x) S = {x € R™h(x) = 0}
? Int(S) = {x € R™ h(x) > 0}
: h(x) 3S = {x € R™ h(x) = 0}
_ 1 S ={x ¢S h(x(t)) <0} | Unsafe condition
R0

* There exists a function h that is always
_ greater than zero
h(x) 20  « Aswe approach the boundary of the
Vx € 0S safe-set, the function h increases

= Now, for the function h(x), h(x) can be implemented in
discrete-time and continuous-time

THE OHIO STATE UNIVERSITY Zeng, Jun, Bike Zhang, and Koushil Sreenath. "Safety-critical model predictive control with discrete-time control barrier
CENTER FOR AUTOMOTIVE RESEARCH function." In 2021 American Control Conference (ACC), pp. 3882-3889. IEEE, 2021. 12




Safe Controller
Safety constraints for obstacle avoidance

4 AV test vehicle N\ Control Loop Controller Formulation

Nonlinear MPC with
discrete-time safe-

" Camera distance constraints
Vehicle
dynamics Lidar

y y Nonlinear MPC with

GNSS/IMU discrete-time CBF
constraints

Vehicle sensor stack

Lateral and MPC
longitudinal uMPC ¢ Kepr
control |
\ VAN
Key Takeaway
Any control action u € U, that keeps CBF h(x) = 0, renders the safe set S forward invariant.
Then u is a safe control input 13
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Platform and Testing setup

Tool: Python(ROS2, CasADi)

Predefined information:

e Reference Trajectory

* Obstacle Information (assume that it’s from perception)

. . 1
Real-time input: °
e GPS(20Hz2) °
 IMU(100Hz2) C
C Ve|OCIty (CAN BUS) = Direct Connection
Safe Analysis: BUCKEYE LOT

Amin = min(\/ (X; — Xops)* 0) G
dsc = R, + R, + safedis
d.c. =R, + R,

e Safe condition: Amin = dsc
 Unsafe condition: Aee < dpin < dg
* Collision condition: Amin < dcc

He 14
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55

wu
o

Y (North) [m]
5

357

30

Scenario | — Static Obstacle Avoidance

Safe distance = 1.5m, obstacle = 2m, vehicle = 1.8

MPC-CBF Controlled AV Trajectory

N
ul

Reference path Controller Avg. computation time [s] Total run time [s] Min dis to obs [m]

—— MPC-DC controller AV trajectory

—— MPC-CBF-QP controller AV trajectory MPC-DC
—— MPC-CBF controller AV trajectory
Static obstacle center MPC-CBF

I Obstacle radius

[ AV radius + Safety radius + Obstacle radius
MPC-CBF-QP

MPC-DC
MPC-CBF

MPC-CBF-QP

-35

-30 -25 -20 -15 -10
X (East) [m]

THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH Details: https://github.com/OSU-CAR-MSL/NMPC-CBF-AV

0.0268 + 0.0135 8.428
0.0328 +0.0173 10.623 5.4387
0.0188 +0.0111 5.342 6.895

4.748 53/38 Unsafe
532 53/3.8 Safe
7.872 53/38 Safe
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Scenario | — Static Obstacle

THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH

Obstacle 1 h(x)

0.04 4

0.02

0.00

—0.02 4

—0.04 ~

Barrier Constraints for Scenario: 1

h(x) =0
'MPC-CBF-QP' - Obs 1
'MPC-DC' - Obs 1
'MPC-DCBF' - Obs 1

—0?04 —0:02 0.(|)D 0.02 0.04
Time [s]
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Scenario Il — Sudden Pedestrian Interaction

Barrier Constraints for Scenario: 2

Obstacle 1 h(x)

—— 'MPC-CBF-QP' - Obs 1
= 'MPC-DC' - Obs 1
—— 'MPC-DCBF' - Obs 1

MPC-DC Controlled AV Trajectory

-
N
o
.

AV Trajectory
@ AVStart
AV End

-
=3
o

*

@ Pedestrian Start
% Pedestrian End
X Closest Point - AV
X

@
o

Zoomed-In View Y

AN

201 55
mm Pedestrian radius
50 AV radius + Safety radius + Pedestrian radius
T

Y (North) [m]
3

40

Pedestrian Trajectory

Closest Point - Pedestrian

o b == h(X) =0 0 -50 -40 -30
0 2 4 8 -120 -100 -80 -60 -—-40 -20 0 20
Time [s] X (East) [m]
MPC-CBF Controlled AV Trajectory MPC-CBF-QP Controlled AV Trajectory
120 * AV Trajectory 120 * e AV Trajectory
@ AV Start @ AV Start
* AVEnd 8 * AV End
100 « Pedestrian Trajectory 100 « Pedestrian Trajectory
@ Pedestrian Start @ Pedestrian Start
% Pedestrian End * Pedestrian End
— 80 X Closest Point - AV 6 — 80 X Closest Point - AV
= X Closest Point - Pedestrian £ X Closest Point - Pedestrian
= o =
-_g 60 Zoomed-In View @ < 60 Zoomed-In View
o I3 g g 75 S gmm" T
£ 701 A = 70 \.
> 40| ) > 40 s P
60 6 ~
55 2
20 e pedestrian radius 20 mmm Pedestrian radius =
501 AV radius + Safety radius + Pedestrian radius 50 AV radius + Safety radius + Pedestrian radius
0 -60 -50 -40 0 -60 =50 —40

-120 -100 -80 -60 -40 -20 O 20
X (East) [m]
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-120 -100 -80 -60 -40 -20 O
X (East) [m]

20

6
5 Controller Avg. computation time [s] | Total run time [s] Min dis to obs [m]

4

‘Hme [s]

MPC-DC

MPC-CBF

MPC-CBF-QP

MPC-DC

MPC-CBF

MPC-CBF-QP

0.0256+0.0151

0.0322 £ 0.0217

0.0216+0.0117

4.557

4929

6.9565

6.966

9.357

5.666

Safe distance = 3m, pedestrian = 1m, vehicle = 1.8

dSC / dCC [m]

58/28
58/28

58/28

3.847
5.208

6.895

Safe Analysis

Unsafe
Unsafe

Safe
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Scenario Il
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— Sudden Pedestrian

Bl Tiese, ‘Wehicdw Posdioe,

1%Mater Toomed View ks o skl

¥ = e 4 = a "

15 s H 1 ®

AEFHQAEH

Barrier Constraints for Scenario: 2

-—- h(x)=0
000 —— 'MPC-CBF-QP' - Obs 1
) —— 'MPC-DC'- Obs 1
—— 'MPC-DCBF' - Obs 1
0.02 4
x
=
—
L et it
[¥]
©
i
(%)
a
@]
—0.02
—0.04

—-0.04 —-0.02 0.00 0.02 0.04
Time [s]
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Summary

So, with all this effort can we guarantee 100% safety? N O

e All these efforts provide a mathematical framework to enforce safety.

* There are practical considerations:
1. Perfect working of sensors and perception pipeline
2. Finding the optimal or at least feasible solution — based on computation limits
3. Uncertainties in measurement, model and the environment

THE OHIO STATE UNIVERSITY
CENTER FOR AUTOMOTIVE RESEARCH

19



Thank You!

Questions!

Special Thanks to:
Yuvraj Singh, Qizhe Xu, Javed Nur Uddin, Shengzhe Tan, Derin Durak
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