

The 3rd Annual Conference of the Israeli Association for Automatic Control

Nonlinear Controller Design for Resonant Inverter Driving Time-Varying RLC Load

Ohad Akler, Alon Kuperman

Applied Energy Laboratory, Ben-Gurion University of the Negev, Israel, in collaboration with nT-tao.

1. Introduction

Resonant converters are widely used in applications such as induction heating, wireless charging, and pulsed-power fusion systems. In the latter, phasor and small-signal models fail to predict system behaviour due to large operating point variations during short, high-intensity pulses. Envelope modelling approach captures large-signal amplitude and phase dynamics while ignoring fast switching dynamics. Nonlinear controller is designed based on a reduced-order envelope model of a resonant inverter driving time-varying RLC load.

2. System Under Consideration

Full-bridge inverter feeding series-connected resistor-inductor-capacitor (RLC) network with time-varying component values.

3. Main Challenge

During short bursts, the system may never reach steady-state during operation. Hence, classical phasor analysis considering steadystate is irrelevant for analyzing system behavior within power burst duration period.

4. Envelope Model

Full order plant model

(6)

(7)

(8)

(9)

(10)

 $\begin{aligned} \frac{di^{s}(t)}{dt} &= \omega_{s}(t)i^{c}(t) + \frac{1}{L(t)} \left[\frac{4v_{in}(t)}{\pi} - \left(R(t) + \frac{dL(t)}{dt} \right) i^{s}(t) - v_{c}^{s}(t) \right], \quad i^{s}(0) = I_{0}^{s} \\ \frac{di^{c}(t)}{dt} &= -\omega_{s}(t)i^{s}(t) - \frac{1}{L(t)} \left[\left(R(t) + \frac{dL(t)}{dt} \right) i^{c}(t) + v_{c}^{c}(t) \right], \quad i^{c}(0) = I_{0}^{c} \\ \frac{dv_{c}^{s}(t)}{dt} &= \frac{1}{C(t)}i^{s}(t) + \omega_{s}(t)v_{c}^{c}(t) - \frac{dC(t)}{dt}v_{c}^{c}(t), \quad v_{c}^{s}(0) = V_{c0}^{s} \\ \frac{dv_{c}^{c}(t)}{dt} &= \frac{1}{C(t)}i^{c}(t) - \omega_{s}(t)v_{c}^{s}(t) - \frac{dC(t)}{dt}v_{c}^{c}(t), \quad v_{c}^{c}(0) = V_{c0}^{c} \\ \frac{d\overline{v}_{in}(t)}{dt} &= -\frac{R(t)}{2\overline{v}_{in}(t)C_{in}} \left(I_{M}(t) \right)^{2}, \quad \overline{v}_{in}(0) = V_{0} \end{aligned}$

$\frac{Reduced order AC-side model}{C(t)L(t)\omega_s^2(t)} \int \tan\left(\varphi_i(t)\right) - C(t)L(t)\omega_s^2(t)\frac{R(t)}{L(t)}$

 $\frac{1}{i^{s}(t)} \Big(C(t)L(t)\omega_{s}^{2}(t) + 1 \Big) \sqrt{1 + \tan^{2}\left(\varphi_{i}(t)\right)}$

6. Control loop & results

7. Conclusions

- High-order envelope model was established, capturing both DC-side and AC-side dynamics of a pulsed powered resonant inverter.
- Nonlinear, reduced-order envelope model was derived from the high-order model, providing a simplified plant for the power-transfer dynamics of a pulsed powered resonant inverter driving

Actual system voltage and current

Closed-loop system response

time-varying RLC load.

- The proposed model was shown to accurately track large-signal amplitude and phase dynamics during transient bursts, outperforming smallsignal and phasor-domain approaches in pulsed power scenarios.
- Non-linearity compensation block was derived, allowing feedback linearization-based control adoption.
- Experimental prototype has been constructed, controller implementation and validation are currently in progress.

*The research was funded in part by the Israel Ministry of Energy