
Resonant converters are widely used in applications such as induction heating, wireless charging, and pulsed-power fusion systems. In the latter, phasor 
and small-signal models fail to predict system behaviour due to large operating point variations during short, high-intensity pulses.

Envelope modelling approach captures large-signal amplitude and phase dynamics while ignoring fast switching dynamics. Nonlinear controller is designed 
based on a reduced-order envelope model of a resonant inverter driving time-varying RLC load.
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Full-bridge inverter feeding series-connected 
resistor-inductor-capacitor (RLC) network with 
time-varying component values.

During short bursts, the system may never 
reach steady-state during operation. Hence, 
classical phasor analysis considering steady-
state is irrelevant for analyzing system 
behavior within power burst duration period.

Full order plant model

Capacitor-fed, IGBT based half-bridge inverter 

Actual system voltage and current

• High-order envelope model was established, 
capturing both DC-side and AC-side dynamics of a 
pulsed powered resonant inverter.

• Nonlinear, reduced-order envelope model
was derived from the high-order model, providing 
a simplified plant for the power-transfer dynamics 
of a pulsed powered resonant inverter driving 
time-varying RLC load.

• The proposed model was shown to accurately 
track large-signal amplitude and phase dynamics 
during transient bursts, outperforming small-
signal and phasor-domain approaches in pulsed 
power scenarios.

• Non-linearity compensation block was derived, 
allowing feedback linearization-based control 
adoption.

• Experimental prototype has been constructed, 
controller implementation and validation are 
currently in progress.
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Reduced order AC-side model
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Lab results, nTtao Laboratory

Closed loop system

Closed-loop system response

Plasma creation, power transfer drops
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Typical System Step Response
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