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Nonlinear Controller Design for Resonant Inverter Driving Time-Varying RLC Load
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Resonant converters are widely used in applications such as induction heating, wireless charging, and pulsed-power fusion systems. In the latter, phasor
and small-signal models fail to predict system behaviour due to large operating point variations during short, high-intensity pulses.
Envelope modelling approach captures large-signal amplitude and phase dynamics while ignoring fast switching dynamics. Nonlinear controller is designed
based on a reduced-order envelope model of a resonant inverter driving time-varying RLC load.

Full-bridge inverter feeding series-connected
resistor-inductor-capacitor (RLC) network with
time-varying component values.
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Capacitor-fed, IGBT based half-bridge inverter

Compact Fusion Power

Actual system voltage and current

V(t) I(t)\ntnl A Compact Fusion bower
A e,
- : IR ARRRI RGN
L FE L I AR
LMJ\\\\ ‘E“U b{ y\l\\m‘\\'\kkth“UU
N | Plasma c.r'ea'tion', power tr.'amfér'drops

P4 rms(Z7) P5.rms(Z3) P6.rms(Z4) P7.mean(F1) P8.rms(Z8) P9.mean(Z3) P10:freq(Z5)
4444V 3BV 1.314 kKA 237 kW 3498V 34V 30.2018 kHz

Lab results, nTtao Laboratory

During short bursts, the system may never
reach steady-state during operation. Hence,
classical phasor analysis considering steady-
state is irrelevant for analyzing system
behavior within power burst duration period.
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Closed loop system
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Closed-loop system response
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* Nonlinear,

Full order plant model
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Reduced order AC-side model
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* High-order envelope model was established,
capturing both DC-side and AC-side dynamics of a
pulsed powered resonant inverter.

reduced-order envelope model
was derived from the high-order model, providing
a simplified plant for the power-transfer dynamics
of a pulsed powered resonant inverter driving
time-varying RLC load.

* The proposed model was shown to accurately

track large-signal amplitude and phase dynamics
during transient bursts, outperforming small-
signal and phasor-domain approaches in pulsed
power scenarios.

* Non-linearity compensation block was derived,

allowing feedback linearization-based control
adoption.

e Experimental prototype has been constructed,

controller implementation and validation are
currently in progress.
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