
Introduction
Efficient battery management is essential for autonomous
electric vehicles (EVs). This research presents a novel
approach using Physics-Informed Neural Networks (PINNs)
to predict battery State of Health (SoH) and State of Charge
(SoC) in real time. By integrating physical laws into machine
learning models, we aim to optimize battery lifespan and
energy efficiency without relying on massive datasets.

Results
The PINN achieved a normalized MAPE as low as 0.0007 on
test data, outperforming conventional neural networks.
Visual comparisons of predicted vs. real SoH show strong
agreement. Incorporating physical constraints improved
convergence, even with limited training data. SoH
predictions remained robust under varied initial conditions
and trajectories.

Methods

Conclusions
Physics-informed learning significantly improves the
reliability and adaptability of battery state estimation. This
method enhances battery longevity and energy efficiency in
EVs while enabling deployment in resource-constrained
real-time systems. Challenges remain in model
generalization and onboard integration, but the approach
shows strong potential for scalable real-world application.
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 This research primarily relies on the data and models provided
by kindly by Jinhua et al. Whereas the database used for
comparison of the PINNs is taken from the open source Oxford
and NASA websites consisting of numerous Lithium-ion Battery
cells data on both charge and discharge cycles, for which the
key parameters were documented in time.

We trained a PINN using key features from lithium-ion battery
charge/discharge cycles—specifically the Peak Incremental
Capacity (P-IC) and thermal characteristics. The model includes
physical constraints reflecting battery degradation, embedded
directly into the loss function. Data were sourced from Oxford
and NASA battery datasets, smoothed and processed using
Gaussian and averaging filters. Hyperparameters were fine-
tuned through extensive sensitivity analysis.
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Traditional data-driven models, while powerful, often
require large and specific datasets, making them hard to
generalize across different battery types and operational
environments. Conversely, physics-based models, though
accurate, are computationally intensive and unsuitable for
real-time applications in embedded systems.
This research addresses this gap by developing a Physics-
Informed Neural Network (PINN)—a hybrid model that
embeds physical laws into the training process of a neural
network. By fusing real-world battery data with constraints
derived from electrochemical principles, this method
improves predictive accuracy, ensures physical plausibility,
and maintains computational efficiency.
Ultimately, the work demonstrates a scalable, real-time
solution for battery state estimation—essential for next-
generation autonomous electric vehicles operating in
dynamic, data-scarce environments.
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