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Networked multi-agent systems

@ Multiple dynamic units interacting over a network to achieve a collective goal.
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Networked multi-agent systems

@ Multiple dynamic units interacting over a network to achieve a collective goal.
@ Many applications

> sensor networks

> electrical microgrids

> multi-robot coordination

e Often control/computation is cheap while communication is expensive.
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Archetype MAS control problem: agreement of integrators

An ensemble of v independent integrator agents
1 1
Pi(s)=— = P(s)=-1,
s s
Goal (asymptotic agreement):
Hm (yi (1) = (1)) =0, Vi, j

The challenge: communication is subject to spatial con-
straints.
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Archetype MAS control problem: agreement of integrators

An ensemble of v independent integrator agents
1 1
Pi(s)=—- = P(s)=-1,
s s
Goal (asymptotic agreement):
Hm (yi (1) = (1)) =0, Vi, j

The challenge: communication is subject to spatial con-
straints.

The solution: the consensus protocol

ui(t) ==k ) (vi=y)).

JEN;

Ni = {P2, P3, Ps}, No = {P1, P3}
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Archetype MAS control problem: agreement of integrators

An ensemble of v independent integrator agents
1 1
Pi(s)=—- = P(s)=-1,
s s
Goal (asymptotic agreement):
Hm (yi (1) = (1)) =0, Vi, j

The challenge: communication is subject to spatial con-
straints.

The solution: the consensus protocol

ui(t) ==k ) (vi=y)):

JEN;

@ Agreement is reached for all initial conditions if G is
connected and k > 0.
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Figure: An example coupling graph
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Nominal behavior of the consensus protocol

o Aggregating the protocol

ui(1) ==k > (yi(1) =y;()) = u(t) =—kLgy(1), Lg=Dg—Ag
JEN;

where Lg, Dg, and Ag are called the graph Laplacian, Degree, and Adjacency matrices.

@ The Laplacian, and hence G, determines the dynamics.
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> If G is connected, 0 is a simple eigenvalue of Lg.
> The projection on the agreement manifold, y,g, is constant and independent of k.

» Convergence rate is exponential in k.
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Nominal behavior of the consensus protocol

o Aggregating the protocol
ui (1) ==k Y (i) =y;(1)) = u(t) = ~kLgy(1), Lg=Dg—Ag
JEN;

where Lg, Dg, and Ag are called the graph Laplacian, Degree, and Adjacency matrices.

@ The Laplacian, and hence G, determines the dynamics.
» Lgis PSD and Lgl =0.
> If G is connected, 0 is a simple eigenvalue of Lg.
> The projection on the agreement manifold, y,g, is constant and independent of k.

» Convergence rate is exponential in k.

@ This is not limited to integrators.
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General consensus protocols

Consider v identical SISO agents with dynamics P

uiZ—ROZ(}’i—)’j) = )’:(IV—PRoLg)_leo
JEN;

where yo are the initial conditions and R a possibly dynamic controller.
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General consensus protocols

Consider v identical SISO agents with dynamics P
-1
ui = —Ro Z (yvi-y)) = y=(,-PRoLg) Pyo
JEN;
where yo are the initial conditions and R a possibly dynamic controller.
@ The Laplacian is diagonalizable
Ty =5 = diag{(1 - 4;PRo) 'P}Jo, TLgT™ "' =diag{1;},

and the transformed agents are decoupled.
@ j1 corresponds to the direction of T and 2; = 0.

In general
© Systems 2,...,v must be stabilized.
@ Since 11 = 0, the agreement trajectory is set by P.
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9 Motivating example
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Real life isn't perfect

@ Replace y; in the consensus protocol with y; +n;;
for some network-induced white noise.
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for some network-induced white noise.

y1(0)

@ Even for simple integrators: ®

» Agreement is not reached.
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> Yagr is no longer constant.
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Real life isn't perfect

@ Replace y; in the consensus protocol with y; +n;;
for some network-induced white noise.

@ Even for simple integrators:

» Agreement is not reached.

> Yagr is no longer constant.

@ Inherent tradeoff

0 0.5 1 15 2 25 3 35 4 45

> Larger k = better nominal convergence. Time, ¢

» Larger k = larger noise sensitivity.
8 & y Figure: Outputs with white network noise

@ This behavior is persistent even for non integrator
agents and arbitrary LTI controller Ry.
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A feedback perspective

We can rewrite the local consensus protocol as

i) = =kING (i) = 7)), Fil0) = o D w0

1
— |
€

Y jeN;

@ Each agent attempts to track the centroid of their neighbors!
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A feedback perspective
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@ Each agent attempts to track the centroid of their neighbors!

@ Note, the noise affects only 7;, but the controller acts uniformly on the entire error.
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A feedback perspective

We can rewrite the local consensus protocol as

1
wi(t) = =kINi| (vi (1) = 7:(1)),  Fir) = W,;N:.- y; (D).

@ Each agent attempts to track the centroid of their neighbors!

@ Note, the noise affects only 7;, but the controller acts uniformly on the entire error.

Classical control is the art of balancing performance and robustness,
can it help us gain insight for agreement problems? J
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© Classical servo concepts for agreement problems
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Those who forget their history are condemned to repeat it

[(a) UNITY-FEEDBACK SETUPJ (b) 2DOF SETUP

@ Unity-feedback: Let R be stabilizing, the output is given by

y=(—-PR)'PRr+(I-PR)'Pd.
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Those who forget their history are condemned to repeat it

L‘{P%—@}%R‘—Té

[(a) UNITY-FEEDBACK SETUPJ (b) 2DOF SETUP

@ Unity-feedback: Let R be stabilizing, the output is given by
y=(—-PR)'PRr+(I-PR)'Pd.
@ 2DOF: Let R be stabilizing and y = For = PCqyr, the output is given by
y=F.r+(I-PR)'Pd.

@ Two-degrees-of-freedom control can decouple the sensitivity and tracking objectives!
> This has been known since the 50's (Lang and Ham, 1955).
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A 2DOF agreement protocol

o Consider the "natural reference” given by

A = 3 (0(0) = F0) = (A @ D(y(1)

INT 45
where A’é = D;Ag.

o Note, 7; is not exogenous, it is an additional network feedback.

ol
Yi P U R,
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A 2DOF agreement protocol

o Consider the "natural reference” given by

Fi(0) = S () + i) = (1) = (A @ D(y(D) + 1)
N 24

where A’é = D;Ag.

o Note, 7; is not exogenous, it is an additional network feedback.

ol
Yi P U R;
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The resulting dynamics

It is easy to show that the dynamics become
y=(U-AL@F,) 'Tad+ (I - AL ® F,) ' (AL ® Fa)n

where
° Ag depends only on the graph (normalized adjacency matrix)
@ F, is an independent design parameter,
e and T, = diag {(I - P;R;)"*P;} is decoupled from both the graph and Fj.

Two questions:
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The resulting dynamics

It is easy to show that the dynamics become

y=(U-AL@F,) 'Tad+ (I - AL ® F,) ' (AL ® Fa)n

where
° Ag depends only on the graph (normalized adjacency matrix)
@ F, is an independent design parameter,
e and T, = diag {(I - P;R;)"*P;} is decoupled from both the graph and Fj.

Two questions:
@ Do the agents reach agreement?

@ What is the agreement trajectory?

11/17



Agreement result

Theorem

Assume that G is undirected and connected, n =0, and d = yo6(t). The agents reach
asymptotic agreement if and only if

@ each local controller R; stabilizes its corresponding plant P;,
Q (I, - Fa)_1 has all poles in the closed left half-plane,

@ and
1

(Ip —A4iFs)" € Hw, YA; €specA% \ {1}.

G
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Agreement result

Theorem

Assume that G is undirected and connected, n =0, and d = yo6(t). The agents reach
asymptotic agreement if and only if

@ each local controller R; stabilizes its corresponding plant P;,
Q (I, - Fa)_1 has all poles in the closed left half-plane,

@ and
=il

(Ip — A4iFs)" € Hw, VYA; € spec Ag \ {1}

@ Note that spec A"g‘ € [-1,1], and A1 =1 is simple and corresponds to the eigenvector 1.
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Almost separation

@ Agreement via 2-step design for F,

» Interpolation constraints: (I — F,)~! has certain closed-loop poles
> Robust control: (I —A;F,)~! is stable VA; € [-1,1).
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Almost separation

@ Agreement via 2-step design for F,

» Interpolation constraints: (I — F,)~! has certain closed-loop poles
> Robust control: (I —A;F,)~! is stable VA; € [-1,1).

@ Decoupled from P; and R;
» Naturally accommodates heterogeneity

@ Noise response depends only on the graph and Fj.
» Can create "off the shelf” F, with prescribed trajectory and noise attenuation.

@ Local loop (T4) can improve convergence and reject disturbances.

Many complex problems become simple.
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@ Numerical Examples
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Motivating example - redux

@ Prescribed nominal performance 75 ~ 0.85[s].
@ Independent AWGN added to network signal.
@ For 1DOF consensus k = 6 would amplify the noise by 6.

@ The metric is drift from nominal consensus value «

e(t) = |y(1) - 1| IDOF-

2DOF:

Metric:

AN

k=6

F(s)—mand
R =50

Distance from nominal
consensus value a

e(t) = [ly(®) — ol
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Motivating example - redux

@ Prescribed nominal performance #5 ~ 0.85[s].
45

40 -

35¢

—e1dot (1)
— €240t (1)

1DOF:

2DOF:

Metric:

AN

k=6

Fa($) = Groyrsy and
R =150

Distance from nominal
consensus value «

e(t) = [ly(®) — ol
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Synchronizing integrators with A sin(z + ¢)

@ Impossible via standard consensus protocols
@ Less obvious choice of F,

@ Local controller tuned to improve convergence rate.

N

1
F. =
a(s) 254 +3s3 +4s2+3s+1
4.142s5 + 25
Ro(s) = ————F—

s+ 10
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Synchronizing integrators with Asin(z + ¢)
@ Impossible via standard consensus protocols @

N

-1
F =
2(s) 254 + 353 + 452+ 35+ 1
NN N I S N S A B 4.1425 + 25
0 5 10 15 20 25 30 35 40 45 50 R()(S) - -

s+ 10
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Consensus w/ heterogeneous agents and disturbances

@ Heterogeneous agents
— A3 1 s+4 s+2 s+0.5 s+2
P(s) = diag {E (1) (s—1)° 5(s+1)° (s+1)2° s(s+1)}
o All agents suffer from sinusodial disturbances and
colored noise

@ Two agents also suffer from step disturbances.
Fa(s)

R(s)

Disturbances:

Noise:

_ 16
(25+1) (s2+2V25+16)

Internal Model based.

Sinusoidal and step
disturbances

Colored noise
W, (s) = 0.05s/(0.05s + 1)
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Consensus w/ heterogeneous agents and disturbances

@ Heterogeneous agents @

S 1 4 2 0.5 2
P(S) - dlag {E’ (s+1s)-‘is—1) ’ siystl)’ (i:l)Q’ S(Ys-:l)}

<= /\ .
| |
y5(0) = \

|
|
! 0.9650 _ 16
g 7 - = Fa(s) = (25+1) (s2+2V25+16)
. R(s) Internal Model based.
| |
. | Disturbances: Sinusoidal and step
| disturbances
y1(0)
/ 0 5 T " 2 Noise: Colored noise
Time, ¢ W, (s) = 0.05s5/(0.05s + 1)
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© Concluding Remarks
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Concluding Remarks

@ Much more in the paper

> Design method for SISO agents

> Robustness for graph structure

> For static consensus: robustness to unknown heterogeneous delays, exact calculation of
consensus value.

@ key point: in 1DOF consensus the loop is "clopen”, in 2DOF it is always closed.

@ Future research:

> Unified design method for F, w/ interpolation constraints and noise attenuation.
» Different choice of the reference 7.
» Different architectures.
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Thanks for your attention!

Contact: GalBarkai@campus.technion.ac.il
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