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Networked multi-agent systems
Multiple dynamic units interacting over a network to achieve a collective goal.

Many applications

▶ sensor networks
▶ electrical microgrids
▶ multi-robot coordination

Often control/computation is cheap while communication is expensive.
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Archetype MAS control problem: agreement of integrators
An ensemble of 𝜈 independent integrator agents

𝑃𝑖 (𝑠) =
1
𝑠

=⇒ 𝑃(𝑠) = 1
𝑠
𝐼𝜈

Goal (asymptotic agreement):

lim
𝑡→∞

(𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)) = 0, ∀𝑖, 𝑗

The challenge: communication is subject to spatial con-
straints.

The solution: the consensus protocol

𝑢𝑖 (𝑡) = −𝑘
∑
𝑗∈N𝑖

(𝑦𝑖 − 𝑦 𝑗).
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Figure: Consensus Trajectories 𝑘 ≡ 1)
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Agreement is reached for all initial conditions if G is
connected and 𝑘 > 0.
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Nominal behavior of the consensus protocol
Aggregating the protocol

𝑢𝑖 (𝑡) = −𝑘
∑
𝑗∈N𝑖

(𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)) =⇒ 𝑢(𝑡) = −𝑘𝐿G𝑦(𝑡), 𝐿G = 𝐷G − 𝐴G

where 𝐿G, 𝐷G, and 𝐴G are called the graph Laplacian, Degree, and Adjacency matrices.

The Laplacian, and hence G, determines the dynamics.

▶ 𝐿G is PSD and 𝐿G𝟙 = 0.
▶ If G is connected, 0 is a simple eigenvalue of 𝐿G .
▶ The projection on the agreement manifold, 𝑦agr, is constant and independent of 𝑘.
▶ Convergence rate is exponential in 𝑘.

This is not limited to integrators.
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General consensus protocols
Consider 𝜈 identical SISO agents with dynamics 𝑃

𝑢𝑖 = −𝑅0
∑
𝑗∈N𝑖

(𝑦𝑖 − 𝑦 𝑗) =⇒ 𝑦 =
(
𝐼𝜈 − 𝑃𝑅0𝐿G

)−1
𝑃𝑦0

where 𝑦0 are the initial conditions and 𝑅0 a possibly dynamic controller.

The Laplacian is diagonalizable

𝑇𝑦 = 𝑦 = diag{(1 − 𝜆𝑖𝑃𝑅0)−1𝑃}𝑦0, 𝑇𝐿G𝑇
−1 = diag{𝜆𝑖},

and the transformed agents are decoupled.
𝑦1 corresponds to the direction of 𝟙 and 𝜆1 = 0.

In general
1 Systems 2, . . . , 𝜈 must be stabilized.
2 Since 𝜆1 = 0, the agreement trajectory is set by 𝑃.
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Real life isn’t perfect
Replace 𝑦 𝑗 in the consensus protocol with 𝑦 𝑗 + 𝑛𝑖 𝑗
for some network-induced white noise.

Even for simple integrators:

▶ Agreement is not reached.
▶ 𝑦agr is no longer constant.

Inherent tradeoff
▶ Larger 𝑘 =⇒ better nominal convergence.
▶ Larger 𝑘 =⇒ larger noise sensitivity.

This behavior is persistent even for non integrator
agents and arbitrary LTI controller 𝑅0.
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A feedback perspective
We can rewrite the local consensus protocol as

𝑢𝑖 (𝑡) = −𝑘 |N𝑖 |
(
𝑦𝑖 (𝑡) − 𝑟𝑖 (𝑡)︸         ︷︷         ︸

𝑒𝑖

)
, 𝑟𝑖 (𝑡) := 1

|N𝑖 |
∑
𝑗∈N𝑖

𝑦 𝑗 (𝑡).

Each agent attempts to track the centroid of their neighbors!

Note, the noise affects only 𝑟𝑖, but the controller acts uniformly on the entire error.

Classical control is the art of balancing performance and robustness,
can it help us gain insight for agreement problems?
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Those who forget their history are condemned to repeat it

RP
uy r

d

Fa

Col

RP
ỹuy r

d

ũ

(a) Unity-feedback setup (b) 2DOF setup

Unity-feedback: Let 𝑅 be stabilizing, the output is given by

𝑦 = (𝐼 − 𝑃𝑅)−1𝑃𝑅 𝑟 + (𝐼 − 𝑃𝑅)−1𝑃 𝑑.

2DOF: Let 𝑅 be stabilizing and 𝑦 = 𝐹a𝑟 = 𝑃𝐶ol𝑟, the output is given by

𝑦 = 𝐹a 𝑟 + (𝐼 − 𝑃𝑅)−1𝑃 𝑑.

Two-degrees-of-freedom control can decouple the sensitivity and tracking objectives!
▶ This has been known since the 50’s (Lang and Ham, 1955).
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A 2DOF agreement protocol
Consider the ”natural reference” given by

𝑟𝑖 (𝑡) := 1
|N𝑖 |

∑
𝑗∈N𝑖

(𝑦 𝑗 (𝑡)) =⇒ 𝑟 (𝑡) = (𝐴★
G ⊗ 𝐼)(𝑦(𝑡))

where 𝐴★
G = 𝐷−1

G 𝐴G.
Note, 𝑟𝑖 is not exogenous, it is an additional network feedback.

Fa

Col

RiPi

ỹiuiyi r̃i
di

ũi
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G
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The resulting dynamics
It is easy to show that the dynamics become

𝑦 = (𝐼 − 𝐴★
G ⊗ 𝐹a)−1𝑇𝑑𝑑 + (𝐼 − 𝐴★

G ⊗ 𝐹a)−1(𝐴★
G ⊗ 𝐹a)𝑛

where
𝐴★
G depends only on the graph (normalized adjacency matrix)

𝐹a is an independent design parameter,
and 𝑇𝑑 = diag

{
(𝐼 − 𝑃𝑖𝑅𝑖)−1𝑃𝑖

}
is decoupled from both the graph and 𝐹a.

Two questions:

Do the agents reach agreement?
What is the agreement trajectory?
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Agreement result

Theorem
Assume that G is undirected and connected, 𝑛 = 0, and 𝑑 = 𝑦0𝛿(𝑡). The agents reach
asymptotic agreement if and only if

1 each local controller 𝑅𝑖 stabilizes its corresponding plant 𝑃𝑖,
2

(
𝐼𝑝 − 𝐹a

)−1 has all poles in the closed left half-plane,
3 and (

𝐼𝑝 − 𝜆𝑖𝐹a
)−1 ∈ 𝐻∞, ∀𝜆𝑖 ∈ spec 𝐴★

G \ {1}.

Note that spec 𝐴★
G ∈ [−1, 1], and 𝜆1 = 1 is simple and corresponds to the eigenvector 𝟙.
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Almost separation
Agreement via 2-step design for 𝐹a

▶ Interpolation constraints: (𝐼 − 𝐹a)−1 has certain closed-loop poles
▶ Robust control: (𝐼 − 𝜆𝑖𝐹a)−1 is stable ∀𝜆𝑖 ∈ [−1, 1).

Decoupled from 𝑃𝑖 and 𝑅𝑖

▶ Naturally accommodates heterogeneity

Noise response depends only on the graph and 𝐹a.
▶ Can create ”off the shelf” 𝐹a with prescribed trajectory and noise attenuation.

Local loop (𝑇d) can improve convergence and reject disturbances.

Many complex problems become simple.
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Motivating example - redux

Prescribed nominal performance 𝑡s ≈ 0.85[s].
Independent AWGN added to network signal.
For 1DOF consensus 𝑘 = 6 would amplify the noise by 6.
The metric is drift from nominal consensus value 𝛼

𝑒(𝑡) = ∥𝑦(𝑡) − 𝛼𝟙∥
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Synchronizing integrators with 𝐴 sin(𝑡 + 𝜙)

Impossible via standard consensus protocols
Less obvious choice of 𝐹a

Local controller tuned to improve convergence rate.
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P3

𝐹a(𝑠) =
−1

2𝑠4 + 3𝑠3 + 4𝑠2 + 3𝑠 + 1
𝑅0(𝑠) = −4.142𝑠 + 25

𝑠 + 10
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Consensus w/ heterogeneous agents and disturbances

Heterogeneous agents
𝑃(𝑠) = diag

{
1
𝑠 ,

𝑠+4
(𝑠+1) (𝑠−1) ,

𝑠+2
𝑠 (𝑠+1) ,

𝑠+0.5
(𝑠+1)2 ,

𝑠+2
𝑠 (𝑠+1)

}
All agents suffer from sinusodial disturbances and
colored noise
Two agents also suffer from step disturbances.
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𝐹a(𝑠) = 16
(2𝑠+1) (𝑠2+2

√
2𝑠+16)

𝑅(𝑠) Internal Model based.
Disturbances: Sinusoidal and step

disturbances
Noise: Colored noise

𝑊𝑛 (𝑠) = 0.05𝑠/(0.05𝑠 + 1)
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Concluding Remarks
Much more in the paper

▶ Design method for SISO agents
▶ Robustness for graph structure
▶ For static consensus: robustness to unknown heterogeneous delays, exact calculation of

consensus value.

key point: in 1DOF consensus the loop is ”clopen”, in 2DOF it is always closed.

Future research:
▶ Unified design method for 𝐹a w/ interpolation constraints and noise attenuation.
▶ Different choice of the reference 𝑟.
▶ Different architectures.
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Thanks for your attention!

Contact: GalBarkai@campus.technion.ac.il
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