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[1,2] Formulate the problem using a

geometric approach, introducing the

concept of a gauge field on the space

of shapes

Data-driven Model estimation [6]

Geometric mechanics with under-actuated shape variables[7]

Gaussian mixture model (GMM) [8]

It is used to optimize gaits and to investigate 

the kinematic systems [3,4]. The coordinate 

system chosen is important in order to 

model the system accurately [5].

Data size 𝑛2 is needed to evaluate

Data size 𝑛𝑛𝑎 is needed to evaluate

Three links swimmer schematic sketch, colored circles present the markers 

Picture of the swimmer in the granular medium

The different gaits are plotted. On the left figure are all the theoretical gaits and the measured circle gait; on the other two figures,

the theoretical and the measured gaits are plotted for the other geometries. The theoretical gaits are represented by solid lines, and

actual motion tracking measurements are marked by dots.

The markers measurement from an experiment are plotted in the xy xz zy planes and isometric display are plotted, allowing us to

visualize the movement of the swimmer easily. The markers’ colors match the colors in the sketch above.

In order to display the results from all of the models and estimations of the different gaits, we present the following heat map plots

𝐺𝑟𝑜𝑢𝑑 𝑡𝑟𝑢𝑡ℎ
𝑛𝑜 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝐷𝑜𝐹 𝑇𝐿𝑆
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝐷𝑜𝐹 𝑇𝐿𝑆

Geometric mechanics provides valuable insights into how biological and robotic systems use changes in shape to move by

mechanically interacting with their environment. This perspective produced an approach for obtaining simplified data-driven

models for locomotion systems directly from motion tracking data. Here we focus on the locomotion of under-actuated robotic

systems with passive shape degrees of freedom (DoF), interacting with a granular fluid - a regime we intentionally selected

because it is hard to model. We compared four modeling approaches, predicting body velocity both within gait and across gaits.

Switching our model from a phase dependent linear model to a manifold learning approach reduced velocity prediction error by

55% but required 6 times as much data; including the passive DoF in the models reduced prediction errors by 4%. These

improvements compound, and yield overall 𝑅2 values above 90%, demonstrating that our data-driven geometric mechanics models

for locomotion systems can produce highly predictive models even where no first principles equations of motion are known.

It is easier to estimate the (0.33,0.48) frequencies models.

Geometries- as we move farther away from the diagonal, the estimation becomes poorer

Both of the GMM models get better results than the TLS models.

Models with passive DoF for the TLS calculation get better results- not significant

Discussion and future work

Swimmer properties

Three links swimmer.

Two actuated angles 𝜙1, 𝜙2.

Four flippers 𝛼1, 𝛼2 and 𝛽1, 𝛽2, 

changing passively with a 

maximum angle constraint.

Shape variables are 𝑟 = 𝑟𝑎, 𝑟𝑝 , 𝑟𝑎
= 𝜙1, 𝜙2 ,                 𝑟𝑝
= [𝛼1, 𝛼2, 𝛽1, 𝛽2].

Location and orientation are 

defined by the center of the 

middle link (𝑥, 𝑦) and its 

orientation angle 𝜃.

Experiments in granular medium-

dry beans.

Actuation gaits

Three actuation frequencies 

(0.33,0.48,1) Hz

Five different gait geometries:

Circle

the first two components of 

Fourier's series of a circle:

𝜙1 = cos 𝜔𝑡 ∓ cos 3 𝜔𝑡 /𝑐
𝜙2 = sin 𝜔𝑡 ± sin 3 𝜔𝑡 /𝑐

𝑐 = 4,9

Abstract:

In this work, we presented preliminary results showing that using GM to model robotic systems in granular media is possible;

furthermore, the GMM models demonstrated good prediction for nearby gaits. Using that method, we can model a system in a

granular medium without adding new features to the model. We also demonstrated that these models were capable of learning

from a small dataset. Those results are preliminary, we have more analysis to conduct on this data, and a change of coordinate

system to an optimal one is needed [5]. We would like to integrate linear elastic effects into those models and incorporate a non-

smooth effect (like the stoppers). We would like to perform new experiments on other robotics systems with more significant

influence of their underactuated shape variables.

Actuation in 5 different geometric shapes and 

three frequencies.

Using each of the gaits to create four 

geometric mechanics models:

Without passive DoF calculated with total 

least square(TLS)

With passive DoF calculated with total 

least square(TLS)

Without passive DoF calculated with 

Gaussian mixture model (GMM)

With passive DoF calculated with 

Gaussian mixture model (GMM)

Each of the models is used to estimate all the 

different gaits

Plotted the trajectory and speed for the model from circle, 0.33[Hz] gait. In the two 

top figures estimating the same gait data, in the bottom plots estimating data from 

P1O4, 1[Hz] gait

Good prediction for all the models in 

interpolation (same gait test)

Models with passive DoF get better results- not 

significant.

In extrapolation, with different geometry and 

frequency, the different GMM models get better 

results.

A plot shows the speed error in the x-direction of the estimation for each model at different frequencies. B plot shows the speed error

in the x-direction of the estimation for each model in the different gait geometries. Models are in the rows and estimations in the

columns. The error was calculated as the percentage of the RMS of the circle 0.48Hz gait speed.

A B

A self-propelled organism or device moves by deforming its shape. These shape changes create stresses in the

surrounding fluid, producing the necessary forces and torques for propulsion.

This formulation provides a powerful framework for understanding the mechanics of self-propulsion in viscous

environments, where inertial forces are negligible compared to viscous forces.

Using of gauge structure to model kinematic 

systems for rhythmic motion-gait.

Geometric Mechanics 

basic equation:

Data from real-life systems has noise

Shape vector change from time to phase

The connection matrix has been rewritten for 

perturbation from the phase-average behavior

From this formulation, we can use total least squares to 

estimate the connection matrices around specific 

phase

Estimating the connection by the equation 

Advantages:

Does not rely on phase estimation, can work with non-

periodic motion

Can handle hysteresis effects

Nonlinear connection

Separate the passive part in the connection equation

Shape vector change from time to phase

The connection matrix has been rewritten for perturbation from 

the phase-average behavior

From this formulation, we can use total least squares to estimate 

the connection matrices around specific phase

Using GMM to evaluate the connection by this formulation: 𝑓 𝑣𝑏 , 𝑟, ሶ𝑟 = 𝑔, ሶ𝑟𝑝
𝑇
− ሚ𝐶 𝑟 + 𝐵 𝑟 ሶ𝑟𝑎
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ResultsBackground
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Arbitrary choice of reference

frames demonstration, from [1]

Three link swimmer’s key elements of geometric paradigm, from[5].

Illustration of the connection estimation process, from [6].

Example of GMM, from [8].

𝜙1 𝜙2

𝛼1

𝛼2

𝛽1

𝛽2

(𝑥, 𝑦)

The plots on the left show the estimation

error of the speed in the x-direction from

models based on circle, 0.48[Hz] gait as a

function of the number of cycles the model

is built from.

The results show that the linear models are

able to learn the model from around 8

cycles, and the error is constant for any

more data used numbers of cycles.

For the GMM models, we can see that we

need around 60 cycles to learn a good

model, from there, there is no significant

change in the error.

𝑛𝑜 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝐷𝑜𝐹 𝐺𝑀𝑀
𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝐷𝑜𝐹 𝐺𝑀𝑀


