Tractable downfall of basis pursuit in structured sparse optimization

Maya V. Marmary Christian Grussler

Technion - Israel institute of technology

IAAC Control Conference, April 2025

Table of Contents

1 Introduction

2 Main Result

Table of Contents

1 Introduction

2 Main Result

3 Visualization

Sparse minimization

 $V \in \mathbb{R}^{m \times n}, \ m < n, \ y \in \mathbb{R}^n$

Sparse minimization

 $V \in \mathbb{R}^{m \times n}, \ m < n, \ y \in \mathbb{R}^n$

Mutual Coherence and Restricted Isometry Property

• Mutual Coherence: For a matrix $V \in \mathbb{R}^{m \times n}$ with columns v_1, \ldots, v_n , the mutual coherence is defined as

$$\mu(V) = \max_{1 \le i \ne j \le n} \frac{|\langle v_i, v_j \rangle|}{\|v_i\|_2 \|v_j\|_2} = \cos \theta_{ij}.$$

Lower $\mu(V)$ indicates that the columns of V are less correlated. A solution is guaranteed to be sparse if $\|u^*\|_0 < 1/2(1+1/\mu(V))$

Mutual Coherence and Restricted Isometry Property

• Mutual Coherence: For a matrix $V \in \mathbb{R}^{m \times n}$ with columns v_1, \ldots, v_n , the mutual coherence is defined as

$$\mu(V) = \max_{1 \le i \ne j \le n} \frac{|\langle v_i, v_j \rangle|}{\|v_i\|_2 \|v_j\|_2} = \cos \theta_{ij}.$$

Lower $\mu(V)$ indicates that the columns of V are less correlated. A solution is guaranteed to be sparse if $||u^*||_0 < 1/2(1 + 1/\mu(V))$

• Restricted Isometry Property (RIP): A matrix V satisfies the RIP of order s with constant $\delta_s \in (0, 1)$ if, for every s-sparse vector x,

$$(1 - \delta_s) \|x\|_2^2 \le \|Vx\|_2^2 \le (1 + \delta_s) \|x\|_2^2.$$

This property ensures that V approximately preserves the ℓ_2 -norm of sparse signals.

Bang-Bang control

Table of Contents

Introduction

2 Main Result

3 Visualization

Main result - Failure Guarantees

Theorem

Let $u^* \in \mathbb{R}^n$ be a solution to ℓ_0 problem, where $V \in \mathbb{R}^{m \times n}$ is such that $V_{(:,1:m)}$ is invertible. Then, u^* is not a solution of ℓ_1 problem if there exists an $i^* \in (m+1:n)$ with $u_i^* \neq 0$ and $\|V_{(:,1:m)}^{-1}V_{(:,i^*)}\|_{\ell_1} < 1$.

Main result - Failure Guarantees

Theorem

Let $u^* \in \mathbb{R}^n$ be a solution to ℓ_0 problem, where $V \in \mathbb{R}^{m \times n}$ is such that $V_{(:,1:m)}$ is invertible. Then, u^* is not a solution of ℓ_1 problem if there exists an $i^* \in (m+1:n)$ with $u_i^* \neq 0$ and $\|V_{(:,1:m)}^{-1}V_{(:,i^*)}\|_{\ell_1} < 1$.

1

Alignment property:
$$\|V^{\mathsf{T}}\beta^*\|_{\infty} = u^{\mathsf{T}}V^{\mathsf{T}}\beta^* = \|u^*\|_1$$

Main result - Failure Guarantees

Theorem

Let $u^* \in \mathbb{R}^n$ be a solution to ℓ_0 problem, where $V \in \mathbb{R}^{m \times n}$ is such that $V_{(:,1:m)}$ is invertible. Then, u^* is not a solution of ℓ_1 problem if there exists an $i^* \in (m+1:n)$ with $u_i^* \neq 0$ and $\|V_{(:,1:m)}^{-1}V_{(:,i^*)}\|_{\ell_1} < 1$.

1

Alignment property:
$$\|V^{\mathsf{T}}\beta^*\|_{\infty} = u^{\mathsf{T}}V^{\mathsf{T}}\beta^* = \|u^*\|_1$$

$$\tilde{\boldsymbol{\beta}}^* \in \mathsf{Im}(\boldsymbol{V}^{\mathsf{T}}) = \mathsf{Im}\left(\begin{bmatrix} \boldsymbol{I}_m \\ \begin{bmatrix} \boldsymbol{V}_{(1:m,:)}^{-1} \boldsymbol{V}_{(:,m+1:n)} \end{bmatrix}^{\mathsf{T}} \end{bmatrix} \right)$$

Motivation

• Model that allows systematical removal of "unhelpful" entries.

Motivation

- Model that allows systematical removal of "unhelpful" entries.
- Motivated by control theory looking for unimodal $p = \|V_{(1:m,:)}^{-1}V_{(:,m+1:n)}\|_1$

Figure: Left: a shifted Gaussian "bump" dropping below zero. Right: a nonlinear, monotonically decaying response.

• Variation of a Vector: For $u \in \mathbb{R}^n$, let \tilde{u} be u with all zero entries removed; then

$$\mathsf{S}(u) := \sum_{i=1}^{m-1} \mathbb{1}_{\mathbb{R}_{<0}}(\tilde{u}_i \, \tilde{u}_{i+1}), \quad \mathsf{S}(0) := -1.$$

• Variation of a Vector: For $u \in \mathbb{R}^n$, let \tilde{u} be u with all zero entries removed; then

$$\mathsf{S}(u) := \sum_{i=1}^{m-1} \mathbb{1}_{\mathbb{R}_{<0}}(\tilde{u}_i \, \tilde{u}_{i+1}), \quad \mathsf{S}(0) := -1.$$

• *m*-Variation Bounding (VB_m): A matrix $X \in \mathbb{R}^{m \times n}$ with m > n is *m*-variation bounding if for every nonzero $u \in \mathbb{R}^n$,

 $\mathsf{S}(Xu) \le m - 1.$

• Variation of a Vector: For $u \in \mathbb{R}^n$, let \tilde{u} be u with all zero entries removed; then

$$\mathsf{S}(u) := \sum_{i=1}^{m-1} \mathbb{1}_{\mathbb{R}_{<0}}(\tilde{u}_i \, \tilde{u}_{i+1}), \quad \mathsf{S}(0) := -1.$$

• *m*-Variation Bounding (VB_m): A matrix $X \in \mathbb{R}^{m \times n}$ with m > n is *m*-variation bounding if for every nonzero $u \in \mathbb{R}^n$,

$$\mathsf{S}(Xu) \le m - 1.$$

• Unimodality: Let Δ denotes the vectors forward difference. A vector $a \in \mathbb{R}^n$ with $a \ge 0$ is unimodal if $S(\Delta a) \le 1$ and any sign change in Δa occurs from positive to negative.

r-th Multiplicative Compound Matrix: For $X \in \mathbb{R}^{n \times m}$, its r-th compound $X_{[r]} \in \mathbb{R}^{\binom{n}{r} \times \binom{m}{r}}$ is defined by

$$(X_{[r]})_{(I,J)} = \det(X_{(I,J)}),$$

where I and J are the r-tuples from $\mathcal{I}_{n,r}$ and $\mathcal{I}_{m,r}$, respectively, in lexicographical order.

¹J.M. Peña (1995). "Matrices with sign consistency of a given order". In: *SIAM J. Matrix Anal. & Appl.* 16.4, pp. 1100–1106.

r-th Multiplicative Compound Matrix: For $X \in \mathbb{R}^{n \times m}$, its *r*-th compound $X_{[r]} \in \mathbb{R}^{\binom{n}{r} \times \binom{m}{r}}$ is defined by

 $(X_{[r]})_{(I,J)} = \det(X_{(I,J)}),$

where I and J are the r-tuples from $\mathcal{I}_{n,r}$ and $\mathcal{I}_{m,r}$, respectively, in lexicographical order.

k-Sign Consistency and *k*-Total Positivity:

- X is (strictly) k-sign consistent if $X_{[k]} \ge 0$ or $X_{[k]} \le 0$ (or > 0 or < 0, respectively).
- X is (strictly) k-totally positive if $X_{[j]} \ge 0$ for all j = 1, ..., k (or > 0 for strict total positivity).

¹J.M. Peña (1995). "Matrices with sign consistency of a given order". In: *SIAM J. Matrix Anal. & Appl.* 16.4, pp. 1100–1106.

r-th Multiplicative Compound Matrix: For $X \in \mathbb{R}^{n \times m}$, its *r*-th compound $X_{[r]} \in \mathbb{R}^{\binom{n}{r} \times \binom{m}{r}}$ is defined by

 $(X_{[r]})_{(I,J)} = \det(X_{(I,J)}),$

where I and J are the r-tuples from $\mathcal{I}_{n,r}$ and $\mathcal{I}_{m,r}$, respectively, in lexicographical order.

k-Sign Consistency and k-Total Positivity:

- X is (strictly) k-sign consistent if $X_{[k]} \ge 0$ or $X_{[k]} \le 0$ (or > 0 or < 0, respectively).
- X is (strictly) k-totally positive if $X_{[j]} \ge 0$ for all j = 1, ..., k (or > 0 for strict total positivity).
- VB_m versus SC_m (Lemma): For $X \in \mathbb{R}^{m \times n}$ with m > n and full row-rank, X is m-variation bounding (VB_m) if and only if it is m-sign consistent (SC_m)¹.
- connecting to unimodality map one sign change to one sign change

¹J.M. Peña (1995). "Matrices with sign consistency of a given order". In: *SIAM J. Matrix Anal. & Appl.* 16.4, pp. 1100–1106.

Main result - Unimodality

Theorem

Let $V \in \mathbb{R}^{m \times n}$, m < n, be such that $V \in SC_m$, $\Delta(V^{\mathsf{T}}) \in VB_m$ and $\det(V_{(:,1:m)}) \neq 0$. Then, $p \in \mathbb{R}^n$ defined by

$$p_k := \|V_{(:,1:m)}^{-1} V_{(:,\{k\})}\|_{\ell_1}, \ k \in (1:n)$$

is unimodal

▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive.

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive.

$$\Delta W \in \mathsf{VB}_m \Rightarrow \\ \mathsf{S}(\Delta Q \mathbf{1}) = \mathsf{S}(\Delta W W_{(1:m,:)}^{-1} K_m \mathbf{1}_m) \le m - 1.$$

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta W \in VB_m \Rightarrow$

$$\mathsf{S}(\Delta Q \,\mathbf{1}) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \,\mathbf{1}_m) \le m - 1.$$

 \blacktriangleright The first m rows of $\Delta Q\, {\bf 1}$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1} = \Delta K_m \mathbf{1} = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}.$$

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta W \in VB_m \Rightarrow$

$$\mathsf{S}(\Delta Q \,\mathbf{1}) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \,\mathbf{1}_m) \le m - 1.$$

 \blacktriangleright The first m rows of $\Delta Q\, {\bf 1}$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1} = \Delta K_m \mathbf{1} = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}.$$

►
$$p_{(m+1:n)} = Q_{(m+1:n,:)}, \mathbf{1} \Rightarrow \mathsf{S}(\Delta p(m:n)) \leq 1.$$

- ▶ By definition $p_{(1:m)} = \mathbf{1}_m$, does this implies $S(\Delta p_{(m:n)}) \leq 1$.
- Define

$$W := V^{\mathsf{T}}$$
 and $Q := W W_{(1:m,:)}^{-1} K_m$.

▶ Because $W \in SC_m$, then from TP properties $\Rightarrow Q_{(m+1:n,:)}$ is totally positive. ▶ $\Delta W \in VB_m \Rightarrow$

$$\mathsf{S}(\Delta Q \,\mathbf{1}) = \mathsf{S}(\Delta W \, W_{(1:m,:)}^{-1} K_m \,\mathbf{1}_m) \le m - 1.$$

▶ The first m rows of $\Delta Q \, {f 1}$ contribute m-2 sign changes

$$(\Delta Q)_{(1:m,:)} \mathbf{1} = \Delta K_m \mathbf{1} = \begin{bmatrix} \vdots \\ 2 \\ -2 \\ 2 \end{bmatrix}.$$

- $\blacktriangleright p_{(m+1:n)} = Q_{(m+1:n,:)}, \mathbf{1} \Rightarrow \mathsf{S}(\Delta p(m:n)) \le 1.$
- Finally, the single sign change in $\Delta p(m:n)$ must be due to a negative entry, which implies that p is unimodal.

Corollary

Corollary

Let $V \in \mathbb{R}^{m \times m}$ defined as in the previous theorem. Further, let $T \in \mathbb{R}^{m \times m}$ be invertible, $\bar{V} = TV$ and

$$p(k) := \|\mathbf{1}_m^{\mathsf{T}} \bar{V}_{(:,1:m)}^{-1} \bar{V}_{(:,m+k)}\|_{\ell_1}$$

for all $k \ge 1$. Then, the sequence $\{p(k)\}_{k\ge 1}$ is unimodal.

system theory: the impulse response is realization independent !

Table of Contents

Introduction

2 Main Result

Sparse minimization (G)

$$V = \mathcal{C}^{N}(A, b) \left[u(N-1) \ldots u(0) \right]^{\mathsf{T}}$$

Table of Contents

Introduction

2 Main Result

3 Visualization

- Further results: Row-sum log-concavity under similar assumptions with mathematical implications.
- Deterministic framework that provides failure guarantees for basis pursuit under structural matrix constraints.

- Further results: Row-sum log-concavity under similar assumptions with mathematical implications.
- Deterministic framework that provides failure guarantees for basis pursuit under structural matrix constraints.
- Bridges dual approximation conditions with total positivity and control theory using structured matrices-extended controllability, Hankel, and Page matrices.

- Further results: Row-sum log-concavity under similar assumptions with mathematical implications.
- Deterministic framework that provides failure guarantees for basis pursuit under structural matrix constraints.
- Bridges dual approximation conditions with total positivity and control theory using structured matrices-extended controllability, Hankel, and Page matrices.
- Success of basis pursuit critically depends on the location of nonzero entries (or poles).

- Further results: Row-sum log-concavity under similar assumptions with mathematical implications.
- Deterministic framework that provides failure guarantees for basis pursuit under structural matrix constraints.
- Bridges dual approximation conditions with total positivity and control theory using structured matrices-extended controllability, Hankel, and Page matrices.
- Success of basis pursuit critically depends on the location of nonzero entries (or poles).
- Future work: sparsity in terms of singular values and rank minimization.