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Sparse minimization

V ∈ Rm×n, m < n, y ∈ Rn

`0 Minimization

minimize
u∈Rn

‖u‖`0 :=
n∑

i=1
|sign(ui)|

subject to V u = y.

?=

`1 Minimization

minimize
u∈Rn

‖u‖`1 :=
n∑

i=1
|ui|

subject to V u = y.
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Mutual Coherence and Restricted Isometry Property
Mutual Coherence: For a matrix V ∈ Rm×n with columns v1, . . . , vn, the mutual
coherence is defined as

µ(V ) = max
1≤i 6=j≤n

|〈vi, vj〉|
‖vi‖2 ‖vj‖2

= cos θij .

Lower µ(V ) indicates that the columns of V are less correlated. A solution is guaranteed
to be sparse if ‖u∗‖0 < 1/2(1 + 1/µ(V ))

Restricted Isometry Property (RIP): A matrix V satisfies the RIP of order s with
constant δs ∈ (0, 1) if, for every s-sparse vector x,

(1− δs)‖x‖22 ≤ ‖V x‖22 ≤ (1 + δs)‖x‖22.

This property ensures that V approximately preserves the `2-norm of sparse signals.
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Bang-Bang control

0 0.5 1 1.5 2 2.5 3
−1

0

1

t

u

Control signal

6 / 18



Table of Contents

1 Introduction

2 Main Result

3 Visualization

4 Concluding remarks

7 / 18



Main result - Failure Guarantees

Theorem
Let u∗ ∈ Rn be a solution to `0 problem, where V ∈ Rm×n is such that V(:,1:m) is invertible.
Then, u∗ is not a solution of `1 problem if there exists an i∗ ∈ (m+ 1 : n) with u∗i 6= 0 and
‖V −1

(:,1:m)V(:,i∗)‖`1 < 1.

1

Alignment property:‖V Tβ∗‖∞ = uTV Tβ∗ = ‖u∗‖1

2

β̃∗ ∈ Im(V T) = Im

 Im[
V −1

(1:m,:)V(:,m+1:n)
]T
 .
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Motivation
Model that allows systematical removal of "unhelpful" entries.

Motivated by control theory - looking for unimodal p = ‖V −1
(1:m,:)V(:,m+1:n)‖1

y

x
y

x

Figure: Left: a shifted Gaussian “bump” dropping below zero. Right: a nonlinear, monotonically
decaying response.
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Total Positivity
Variation of a Vector: For u ∈ Rn, let ũ be u with all zero entries removed; then

S(u) :=
m−1∑
i=1

1R<0(ũi ũi+1), S(0) := −1.

m-Variation Bounding (VBm): A matrix X ∈ Rm×n with m > n is m-variation
bounding if for every nonzero u ∈ Rn,

S(Xu) ≤ m− 1.

Unimodality: Let ∆ denotes the vectors forward difference. A vector a ∈ Rn with a ≥ 0
is unimodal if S(∆a) ≤ 1 and any sign change in ∆a occurs from positive to negative.
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1R<0(ũi ũi+1), S(0) := −1.

m-Variation Bounding (VBm): A matrix X ∈ Rm×n with m > n is m-variation
bounding if for every nonzero u ∈ Rn,

S(Xu) ≤ m− 1.

Unimodality: Let ∆ denotes the vectors forward difference. A vector a ∈ Rn with a ≥ 0
is unimodal if S(∆a) ≤ 1 and any sign change in ∆a occurs from positive to negative.

10 / 18



Total Positivity

r-th Multiplicative Compound Matrix: For X ∈ Rn×m, its r-th compound
X[r] ∈ R(n

r)×(m
r ) is defined by

(X[r])(I,J) = det
(
X(I,J)

)
,

where I and J are the r-tuples from In,r and Im,r, respectively, in lexicographical order.

k-Sign Consistency and k-Total Positivity:
X is (strictly) k-sign consistent if X[k] ≥ 0 or X[k] ≤ 0 (or > 0 or < 0, respectively).
X is (strictly) k-totally positive if X[j] ≥ 0 for all j = 1, . . . , k (or > 0 for strict total
positivity).

VBm versus SCm (Lemma): For X ∈ Rm×n with m > n and full row-rank, X is
m-variation bounding (VBm) if and only if it is m-sign consistent (SCm)1.
connecting to unimodality map one sign change to one sign change

1J.M. Peña (1995). “Matrices with sign consistency of a given order”. In: SIAM J. Matrix Anal. & Appl.
16.4, pp. 1100–1106.
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Main result - Unimodality

Theorem

Let V ∈ Rm×n, m < n, be such that V ∈ SCm, ∆(V T) ∈ VBm and det(V(:,1:m)) 6= 0. Then,
p ∈ Rn defined by

pk := ‖V −1
(:,1:m)V(:,{k})‖`1 , k ∈ (1 : n)

is unimodal
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Proof outline
I By definition p(1:m) = 1m, does this implies S(∆p(m:n)) ≤ 1.

I Define
W := V T and Q := W W−1

(1:m,:)Km.

I Because W ∈ SCm, then from TP properties ⇒ Q(m+1:n,:) is totally positive.
I ∆W ∈ VBm ⇒

S(∆Q1) = S(∆W W−1
(1:m,:)Km 1m) ≤ m− 1.

I The first m rows of ∆Q1 contribute m− 2 sign changes

(∆Q)(1:m,:) 1 = ∆Km 1 =


...
2
−2
2

 .
I p(m+1:n) = Q(m+1:n,:),1⇒ S(∆p(m : n)) ≤ 1.
I Finally, the single sign change in ∆p(m : n) must be due to a negative entry, which implies

that p is unimodal.
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Corollary

Corollary
Let V ∈ Rm×m defined as in the previous theorem. Further, let T ∈ Rm×m be invertible,
V̄ = TV and

p(k) := ‖1T
mV̄
−1

(:,1:m)V̄(:,m+k)‖`1

for all k ≥ 1. Then, the sequence {p(k)}k≥1 is unimodal.

system theory: the impulse response is realization independent !
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Sparse minimization (G)

V = CN (A, b)
[
u(N − 1) . . . u(0)

]T
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Concluding remarks
Further results: Row-sum log-concavity under similar assumptions with mathematical
implications.
Deterministic framework that provides failure guarantees for basis pursuit under structural
matrix constraints.

Bridges dual approximation conditions with total positivity and control theory using
structured matrices–extended controllability, Hankel, and Page matrices.
Success of basis pursuit critically depends on the location of nonzero entries (or poles).
Future work: sparsity in terms of singular values and rank minimization.
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