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INTRODUCTION

+ Multi-agent systems (MAS) consist of autonomous agents interacting to achieve a
common goal.

« Their security is vulnerable to cyber-physical attacks, especially through network
topology identification.

« If critical agents are identified, they become targets for attacks.

« This work explores identifying leader agents in networked dynamic systems under
a semi-autonomous consensus protocol.




AUTONOMOUS CONSENSUS PROTOCOL

+ In the autonomous consensus protocol, agents aim to reach agreement via the
distributed protocol
I.Z' = Z(I] — IZ'), 1eV
j~t
 Under a connectivity assumption of the information exchange graph, the protocol
satisfies:

tlinslo x(t) € span{l,,}
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SEMI-AUTONOMOUS CONSENSUS PROTOCOL

In the semi-autonomous consensus protocol, some agents, called leaders, receive an
external input:

Bt e
€Xr; = .
ij‘(zj — ), 1€ Vy.
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OBJECTIVE

Objective

Identify the leader agents in a semi-autonomous consensus network.

« underlying graph is unknown
- assume constant external inputs
- access to measurements of system state
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FROM EIGENVECTORS TO LEADERS: A DISTRIBUTED APPROACH

We explore the connection between the Laplacian eigenvectors and leader positions:

« Distributed estimation of Laplacian eigenvectors from system trajectories.

« Identify relationship between eigenvectors of Laplacian with leader positions.
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FIEDLER EIGENVECTOR

. {Zm(xj — @)+ (W —x), i€V,
Tr; = : )
ZjNi(iL'j — ), 1€ Vy.

+ The semi-autonomous protocol can be written as:

IIW\
Opyy x[ve

ug®

T = —LB(g)l’ +

exr
[Vel

o Lp(G) is called the grounded Laplacian
o the eigen-pair (Ar,vr) of Lp(G) corresponding to the smallest eigenvalue of are
termed the Fiedler eigenvalue and eigenvector



FIEDLER EIGENVECTOR AND SYSTEM TRAJECTORIES

+ The Fiedler vector components are associated with the graph structure.
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« The velocities of the nodes are linked to the Fiedler vector components.
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GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

We will examine a sequence of expanding graphs G°() with some structure constraints:

« The leaders set remains constant.
 The leader degree is constant.
- Leader nodes are not connected to each other.

Let g;(” denote the graph obtained by removing all leader nodes and their incident
edges from G°("). The additional property in the sequence is as follows:

+ The minimum degree in g}’“) is strictly increasing (denoted as d.).



GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

dr=1



GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

QZF=1 dF=2



GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

QZF=1 dF=2 dF=3




GRAPH SEQUENCE WITH FIEDLER VECTOR SEPARATION

dp=1 dp=2 dp=3
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FIEDLER VECTOR CONVERGENCE

The Fidler vector of G7(Y) converges to the following values:

, 1, TRAL
lim [v5?]; = [o5]; where [o5]; = lim a0 I=
1—00 1—00 7” =RY)
d()+1-xe@® > J 4

where d(j) is the node degree and X is the Fiedler eigenvalue.

Fiedler Vector Convergence




MAIN RESULTS

Let G be graph where the nodes separated into two groups, leaders V¢ and followers
Vi,
If the following conditions are met:

G is connected;

k ¢ N(j) forall k,5 € V, (leader nodes are not connected to each other);

1 — maXjey, Frrd—x > MaX; ke, i>k |[Br]; — [0r,1¢]

dp is sufficient large,

where ) is the Fiedler eigenvalue of G, then

il —mmmdonls > el )= [ I

"



FROM SEMI-AUTONOMOUS TO AUTONOMOUS

To link the Fiedler vector with node velocities, we transform the semi-autonomous
system into an autonomous-like structure:

« Introduce a state variable y representing external control inputs.
+ Assume the external input remains constant, giving the dynamics:

75 =0, w5i(0) = ui”.

Our graph G is directed and consists of three groups: V,, Vy, V...
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FROM SEMI-AUTONOMOUS TO AUTONOMOUS

+ The system dynamics can be expressed as:
x
y )

where L = L(G) is the directed graph Laplacian of G. The submatrices are given by:

Tvg OF p [ﬂgu]_

Lp Lis

Y 0 0

0 0

Results

The Fiedler eigenvalue and eigenvector of L is also the smallest non-zero eigenvalue
for L.
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GROUNDED LAPLACIAN PROPERTIES

If G is connected, then the following properties hold for Lg:

The Fiedler Eigenvalue )\r (smallest eigenvalue) of L is positive and simple and
satisfies

0< A <1
The upper bound of the Fiedler eigenvalue is attained iff all nodes in G are leaders.

The Fiedler Eigenvector vy is unique (up to scaling) and is the only positive
eigenvector.
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RELATIVE TEMPO

The relative tempo is the ratio of velocities of agents,

zi(t)
jjref(t)

where Z,f is the velocity of a specific agent chosen as a common divisor for all others.

[T(®)]: =

For sufficient time T

[ [F(H)]; =~ [vrli, t>T ]

[4 H.Shao and M. Mesbahi, Degree of relative influence for consensus-type networks,
Portland, OR, USA, 2014, pp. 2676-2681.
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LEADERS IDENTIFICATION ALGORITHM

Assuming existence of the result from the theorem, i.e.,

minforli —maxforli > max [fr]i = [vr]jl-

we use the following algorithm to identify the leaders

Step 1: Measure the agents velocities to an external constant input until steady
state.

Step 2: Calculate the relative tempo and compute the Fiedler vector.
Step 3: Sort the Fiedler vector vy, = sort(vr) where [vg,]; < [vF,]it1-
Step 4: Calculate the number of leaders n; with

n; = |Ve| = ar ma VE i1 — |1 e
1=[Vel=arg | max = {[vrli - [vr)s}

Step 5: The leaders are corresponding to the smallest n;, components in vp,.



In this example, we demonstrate a 2D scenario. We consider a system with n = 10
agents, where {2,5,8} € V. Recall the protocol dynamics:

. {iji(xj 7$7)+(UEX7I1>/ 1€ VZ,
> jeil@i — i), i€ Vs,
The external input provided to the leaders is

T
u:{zm 35 48 44 16 45}



EXAMPLE CONT.

The grounded Laplacian and the Fiedler vector is given by:

3 0 -1 -1 0 -1 0 0 0 0 [0.37]
o 2 0 0 0 0 0 0 0 -1 048
-1 0 5 -1 0 -1 0 0 -1 -1 0.37
-1 0 -1 5 -1 0 -1 0 -1 0 0.35
O 0 0 -1 2 0 0 0 0 0 019
L= , Uk =
-1 0 -1 0 0 4 0 -1 -1 0 0.34
o 0 0 -1 0 0 2 0 0 -1 0.37
o 0 0 0 0 -1 0 2 0 0 0.19
O 0 -1 -1 0 -1 0 0 3 0 0.37
0 -1 -1 0 0 0 -1 0 0 3 10.32]



EXAMPLE CONT.

Next, we verify the conditions outlined in the Theorem:

- Leaders are not connected to each other.
+ Degree distribution condition.
* d is sufficient large.

Since all conditions are satisfied, the leaders can be identified using the suggested
algorithm.
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EXAMPLE CONT.

I. Measure the velocities and calculate the relative tempo:

T
72[0.37 0.18 037 035 0.19 034 0.37 0.19 0.37 0.32]

We note that this is equal to the Fiedler vector vp.
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EXAMPLE CONT.

1. Identify Leaders

+ Sort the Fiedler vector vy, = sort(vr) where [vr,|; < [vF,|it1:

T
vps=[0.18 0.19 0.19 0.32 034 035 0.37 037 0.37 0.37

|ndex=[25810647931T

 Calculate the number of leaders n; with

n; =V, =ar ma; VR liv1 — [vp i} = 3.
v=Ve=arg | max o {vrlie = (or s}

« The leaders correspond to the smallest n, components in vz :
Ve = {2,5,8}
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« Certain graph structures are more likely to be associated with separation in the
components of the Fiedler vector.

+ Such graphs can facilitate leader identification through external observation in
scenarios with constant external input.
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FUTURE WORK

+ Investigate scenarios involving non-constant external input signals.
+ Develop methods for identifying the complete network structure.

+ Explore additional graph topologies related to component separation in the Fiedler
vector.
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