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Scenario and Objective |

Swarm Attack Scenario Solution Approaches
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Scenario and Objective |

Swarm Attack Scenario Solution Approaches
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Challenges Objective

» Computationally hard
» Dynamic adaptation Dynamic WTA strategy J
» VT allocation
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Global Assumptions

Planar nonlinear engagement
Predictable Evader motion
Unicycle models for Pursuers and Evaders

Constant speed
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Perfect information
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oot-Look Scenario

Earliest intercept
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» First wave is allocated a-priori

» Intercept times define allocation decision instances
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Shoot-Shoot-Look Scenario

Earliest intercept
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» Backup pursuers are assigned to virtual targets (VT)
» Virtual target = position + heading = future pursuer state
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Shoot-Shoot-Look Scenario

Earliest intercept
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» Virtual targets are samples from reachable sets

> Reachable set — all states that can be attained at time t5, from the initial state xp(to)
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Engagement Kinematics

Engagement Geometry

>
>

X

Motion Models

Xk = V) cos O
Yk = Vi sin 0y k € {P;, Ej}
O = ai/ Vi

» ag. = const — circular motion

» ap, € {0,+ap>} — Dubins vehicle

» Pursuer employs min-time trajectories against
VT [1] and Evaders [2]

[1] Dubins, L. E. (1957). On curves of minimal length with a constraint on average curvature, and with prescribed initial

and terminal positions and tangents. American Journal of mathematics, 79(3), 497-516.
[2] Zheng, Y., Chen, Z., Shao, X., & Zhao, W. (2021). Time-optimal guidance for intercepting moving targets by Dubins

vehicles. Automatica, 128, 109557.
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Reachable Set & Virtual Target Selection

Pursuer Reachable Set VT Sampling
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» Analytical RS description from [3]
» [SL, RSL, LSR to ensure min-time paths

Xp,/pp,

[3] Patsko, V. S., & Fedotov, A. A. (2022). Three-dimensional reachable set for the Dubins car: Foundation of analytical
description. Commun. Optim. Theory, 2022, 1-42.
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Intercept Model

» Pursuer motion related to intercept probability

J3,(tr;)
pij(ta,) = P} exp —2'7,23:

» Jp. — path cost = time + control effort

Jnle) = t+a [ (e

» Allows small corrections
» Penalizes large corrections
» Can extend to better model

Intercept probability: p;;
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Objective and Reward Functions

Objective — intercept maximal number of evaders s.t. time constraints

Status dynamics
Ej(ta,,,) = Ej(ta,) — Aj(ta,)w;(tq,)

» ¢4, — decision time (engagement outcome instance)

> E;(ty,) € {0,1} — evader status

> Aj(tq,) € {0,1} — allocation variable

> w;(ty) € {0,1} — random engagement outcome indicator (1 with prob. pj(tg,))

Equivalent exact reward function

= max t
allocation {Z pU dk }

» Allocation — VT & Evaders
» Exact reward is sparse

13/20



Backup Pursuer Decision Making

Decision Flowchart Information Available to Pursuer
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Allocation Policy
» Kinematics — intercept probabilities
» Greedy centralized allocation to free evader » ;i — first-wave intercept probs.

. . . i _ : : (
» Sequential decentralized VT allocation — > 7 - predicted intercept prob. through VT

Greedy vs RL
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eedy Heuristic Algorithm

Heuristic Idea Greedy Algorithm

Greedy altruism 1. If there is an unengaged evader — greedy allocation

VT: maximize intercept prob. addition (max. intercept probability)

2. If all evaders engaged

2.1 Initialize cumulative evader intercept probabilities

Example VT Evaluation mj = pjj, i€ first wave
mll 2.2 For each backup pursuer P;
(1) (1) > select the VT as
VT, 7f§11) VT,

) I

Py I = arg max Zﬂ' (1—m)p, VTp = VTg
» Update cumulative intercept probabilities

I

(1- 7rj)7rij

num. live evaders

mj 4= T+
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RL Algorithm

Algorithm 1. If there is an unengaged evader — greedy allocation (max. intercept
steps: probability)

2. Otherwise select VT as RL action

Rewards:

1. Exact (sparse) — next intercept probability pj, j, (td,)
2. Non-sparse VT — for current backup pursuer P;:

1. assign a score for each potential VT: 11
§ V) o v
0] 0 o g
s = (1-m) (max 7 P Py
j=1 ==
2. assign reward as added score
500,

num. live evaders
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Scenario Example

» # Pursuers = 15, 10 — first wave, 5 — backup
» # Evaders = 10
> #AVT =9

Example scenario video
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Statistical Analysis

RL vs Greedy Learning curves
Mean ground hits 7 == vtretwam‘d*
13vs9 | 15vs 10 ; — greedy
Greedy 2.1310 2.2178

Exact 2.0928 2.1917 2

RL Non-sparse | 2.0798 2.1581

» Greedy close to RL

» Non-sparse reward better than exact k’W"WW

» Non-sparse reward continues to improve
ground hitS 0.0 0.5 1.0 L5 2.0 25 3.08
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Conclusions

» Generalized formulation of dynamic WTA problem in Shoot-Shoot-Look scenario
» Exact reward function

» Greedy and RL algorithms

» Both used as mutual optimality measures

» Greedy close to RL

» Non-sparse reward is better than exact for RL

> Kinematic features did not improve performance = probabilistic features are sufficient
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Thank you for your attention!
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