A Parallel Analog and Digital Adaptive Feedforward Active Noise Controller

Yoav Vered

ZEN ACOUSTICS

The Sound of Silence

Institute of Sound and Vibration Research

Motivation

Adaptive Active Noise Control: The classic setup

Signals: d: undesired noise x: reference u: control signal y: control action e: measured error r: filtered reference Systems:

P/*S*: Primary/Secondary acoustic path (LTI) $W(z) = \sum_{k=0}^{K-1} w_k z^{-k}$: FIR controller \hat{S} : Secondary path model

Adaptation law using the Filtered Reference - Least Mean Squares method (Fx-LMS) $w_k[n+1] = w_k[n] - \mu r[n-k]e[n]$ $r[n] = \hat{S} * x[n], 0 < \mu < \frac{2}{\max(\sigma_{rr})}$

Sampled Filtered reference LMS Active Noise Control

In theory

LMS adaptation law

In reality

B. Lam et al. Building and Environment (2021)

A Parallel Analog and Digital Adaptive Feedforward Active Noise Controller

Motivation

Effect of secondary path delay

There is no magic fix

Causality condition for feedforward control

To obtain good performance:

$$\Delta t_P > \Delta t_S + \Delta t_L$$

- Δ*t_P* the time of flight from the reference sensor to the error microphone a function of the sensors' positions
- Δt_S the time of flight from the loudspeaker to the error microphone a function of the loudspeakers' positions
- Δt_D- the time delay due to filtering and sampling
 a function of the sample rate and filters' bandwidth

Parallel Analog-Digital Adaptive Active Noise Control

 $\Delta t_P > \Delta t_S + \Delta t_D$

Objective: minimize the time delay of the sampling: Δt_d

adaptable analog filter parallel to

Proposed solution: add an

the sampled one

Analog adaptable controller design

Idea: Analog tapped delay with configurable individual weights

Realization of delay element as 2nd order all-pass filter

$$G_l(s) = e^{-(lh)s} \approx \frac{1}{4} \frac{s^2 - 6(lh)^{-1}s + 12(lh)^{-2}}{s^2 + 6(lh)^{-1}s + 12(lh)^{-2}}$$

ZEN ACOUSTICS The Sound of Silence

Analog adaptable controller design

Idea: Analog tapped delay with configurable individual weights

BLUE: Concatenating the base delay filter RED: Each delay filter is implemented individually

$$G_{l}(s) = e^{-(lh)s} \approx \frac{1}{4} \frac{s^{2} - 6(lh)^{-1}s + 12(lh)^{-2}}{s^{2} + 6(lh)^{-1}s + 12(lh)^{-2}}$$

Group delay $\tau_{g}(\omega) \equiv -\frac{\partial \angle G(\omega)}{\partial \omega}$

Slide 7

Experimental verification

dSPACE 1003 Digital controller and adaptation

Experimental verification

Reference mic

Secondary path models

Padé all-pass filter

BLUE: Measured RED: Model

Best case scenario

 $\Delta t_P > \Delta t_S$

Worst case scenario

$$\Delta t_P \approx \Delta t_S$$

A Parallel Analog and Digital Adaptive Feedforward Active Noise Controller

Anechoic chamber experiments - NR

Noise reduction between 20 – 2000 Hz

$\theta = -90$	u_d	$u_d + u_{a,0}$	$u_d + u_{a,3}$	$u_d + u_a$
NR [dBA]	12.2	13.3	18.6	17.6

$\theta = -45$	u_d	$u_d + u_{a,0}$	$u_d + u_{a,3}$	$u_d + u_a$
NR [dBA]	11.6	12.8	17.4	17.2

the second second
A Market

$oldsymbol{ heta}=0$	u_d	$u_d + u_{a,0}$	$u_d + u_{a,3}$	$u_d + u_a$
NR [dBA]	11.3	13.5	16.3	16.4

- A parallel adaptive analog and digital controller was designed to minimize the sampling delay
- The adaptable analog controller was designed using digital potentiometers and 2nd-order all-pass filter
- Experimental results indicate great improvement when using the parallel controller
- The additional analog tap, $u_{a,3}$, is required to obtain near-optimal performance. The direct feedthrough $u_{a,0}$ by itself is not enough.

Thank you for your attention

A Parallel Analog and Digital Adaptive Feedforward Active Noise Controller