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Active Disturbance Rejection Control

Challenges of Modern Control Systems

, . . . ADRC is a control method that extends conventional PID control by incorporating an extended state & inputs 4 o«
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performance across a wide range of operating conditions. This technique has been shown to be
particularly effective in motor control applications, where it enhances precision and stability without the
need for high-fidelity system models.

* Multiple inputs and outputs (MIMO)
* High-performance demands.
Classical control methods, such as PID controllers, are often inadequate to address these
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To meet these challenges, we explore the design of some of the more sophisticated controllers, focusing on state-of-the- REINFORCEMENT
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