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Introduction - Flapping Wing MAVs Are Coming! 

Robobee X-Wing (Jafferis et al,2019)

Xiao et al, 2021

Inefficient aerodynamic setup of current MAV
Improvements in robotics and avionics
We need good controllers

https://www.nature.com/articles/s41586-019-1322-0
https://link.springer.com/article/10.1007/s42235-021-00118-4


Current models of flies are PID based
Address only angular control but are
highly coupled with velocities
Hard to find actual parameters

Beatus 2015, Whithead & Beatus 2015

Introduction - Biomimicry can help?

https://royalsocietypublishing.org/doi/10.1098/rsif.2015.0075
https://journals.biologists.com/jeb/article/218/21/3508/14455/Pitch-perfect-how-fruit-flies-control-their-body


Introduction - What is our goal?

Stable controller for all axes combined
Robust
Adaptive
Efficient



What do we need?

Simulation

Data acquisition system

Algorithm
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Data Acquisition System and Hull Reconstruction

Maya et al 2023
A hull reconstruction–reprojection method for pose

estimation of free-flying fruit flies. J Exp Biol 

https://pubmed.ncbi.nlm.nih.gov/37795876/


Imitation Learning Algorithm

GAN Architecture
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https://arxiv.org/abs/1606.03476
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Results - Learning from a PID “Expert”

Using trajectories from PID controlled simulated flies
Hyper Parameter tuning
Time to convergence ~70-120 epochs



Results - Learning from a PID “Expert”

Testing the trained agent under pitch perturbations
Comparing performance to PID “expert”



Results - Measured Raw Data

Data Collected for the MFL Dataset:
>1000 Trajectories
>41K Individual wingbeats



Results - Learning from the raw data

Convergence at 120-140
Controller was able to sustain stable flight



Results - Learning from the raw data

Stabilizes Pitch and Roll
Dampens yaw
Maintains velocity and altitude



Results - Learning from the raw data: Unseen Conditions

Pitch perturbation
(Beatus et al 2015)



Results - Learning from the raw data



Results - Learning from the raw data

GAN collapses at ~240
Hyper-Parameter tuning has no effect
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