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INTRODUCTION



INTRODUCTION
• A mechanism for rotating a platform around a fixed 

center

• The links and platform form a kinematic loop

• Belongs to the family of parallel robots

• We wish to find the best sequence of control inputs 
that rotates the platform from any initial position to 
point at a desired line of sight (rest-to-rest).



INTRODUCTION (CONT.)

• Trajectories are expected to be short

• Limited on-board computing power

• Perturbations in sensing and actuation

• Loss of controllability due to singularities

• Simple feedback-based control is fast and 
geometrically intuitive but not always safe.

• Model-Predictive Control is computationally 
intensive



THE PLANT MODEL



THE PLANT

• Initial inverse kinematics

• Forward kinematics

• Singularity and collision monitoring

𝑄 – Platform’s Rotation Operator
𝜽 - Joint Angles
𝝎 – Platform’s Angular Velocity
𝛾 – Command Joint Rates

�̇� = 𝝎 × 𝑄

�̇� = 𝜸
𝝎 = 𝐽 𝑄, 𝜽 𝜸

𝐽 𝑄, 𝜽 = −𝐴ିଵ𝐵
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𝐵 = 𝑑𝑖𝑎𝑔 𝒘ଵ × 𝒖ଵ ȉ 𝒗ଵ, 𝒘ଶ × 𝒖ଶ ȉ 𝒗ଶ, 𝒘ଷ × 𝒖ଷ ȉ 𝒗ଷ



2ND KIND SINGULARITY VS CO-ELEVATION CONTOURS 

• Det(A) as a function of 𝜙 and 𝜃

• Singularity zones in black color

• Contours correspond to 
different elevation angles



CONTROLLER DESIGN



QUATERNION FEEDBACK CONTROL

• Inspired by satellite attitude control

• Quaternion kinematics

• Command joint rates

• Non-linear regulator, globally convergent, Lyapunov analysis

• Geometrically intuitive, LQ optimal 

• Unconstrained (UF) 

�̇� = −
1
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−𝒆்
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𝝎 = 𝐽𝑫𝑲 𝑄, 𝜽 𝜸

𝜸 = −K 𝐵ିଵ𝐴 𝒆



PROPOSED APPROACH

• Separation of Elevation and Azimuth control

• Elevation control via advanced computational methods

• Azimuth control via proportional feedback with saturation

𝛾 𝑡 = 𝛾ா 𝑡 + 𝛾(𝑡)



AZIMUTH CONTROLLER

• Azimuth control is designed as a proportional
control with azimuth error feedback.

• Identical command rates are applied
to the three joints.

• The joint rate command is limited by the joint 
maximum speed trimmed with the rates allocated 
to the elevation control.



ELEVATION CONTROLLER

• Reinforcement Learning Approach

• Grid Search Approach



REINFORCEMENT LEARNING METHOD



ELEVATION DRL CONTROL

• Euler angles, 3-2-1 sequence,  Base to Platform

• Two methodologies:

• A2C (Discrete action space)

• TD3 (Continuous action space)

• Stable-Baselines3* package in Python

* https://stable-baselines3.readthedocs.io/en/master/#



ELEVATION DRL CONTROL
• The action space for A2C encompasses a finite number of 

discrete actions.

• For TD3, the action space is continuous, allowing for any joint 
rate within the range of −400 to 400 degrees per second.

• Episodes initiate from a randomly determined state within a 
predefined bounding cone.

• Episodes conclude in one of three conditions:

• The platform aligns with the desired line of sight within an error 
tolerance, 

• The platform exceeds a singularity threshold of 0.05, 

• The episode surpasses 400 steps.

Bounding cone



ELEVATION DRL CONTROL - THE REWARD FUNCTION

• The reward function is formulated as

𝑅 𝑠௧, 𝑎௧, 𝑠௧ାଵ = 𝑇 𝑠௧ାଵ + 𝐹 𝑠௧, 𝑎௧, 𝑠௧ାଵ

• 𝑇 𝑠௧ାଵ is the terminal outcome:

𝑇 𝑠௧ାଵ = ቊ
50, 𝑖𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑑

−70, 𝑖𝑓 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑡ℎ𝑒𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑

• 𝐹 𝑠௧, 𝑎௧, 𝑠௧ାଵ is an immediate outcome:

𝐹 𝑠௧, 𝑎௧, 𝑠௧ାଵ = 10 Υ௧ାଵ
− Υ௧

+ 30 η௧ − η௧ାଵ − 0.2

Υ௧ denote the singularity index det(𝐴௧) at step 𝑡
η௧ denote the elevation error at step 𝑡



TRAINING
TD3A2CAlg.

ContinuousDiscreteAction Space
400N
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RL TRAJECTORIES



ANIMATION

A2C TD3 UF



DRL SIMULATION RESULTS SENSITIVITY TO LOS BOUNDARIES
UFTD3A2CUFTD3A2C

(0° - 40°)(0° - 40°)Source El. Range
(35° - 40°)(0° - 40°)Target El. Range

66.8%98%99.9%95.3%99.7%100%Success rate
42°66°76°33°47°50°Average Arc Length*
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* Successful episodes only



SENSITIVITY TO NOISES (0°-40°)
Success Rate vs Measurement Noise Success Rate vs Actuation Noise



GRID SEARCH APPROACH



SINGULARITY MAP DISCRETIZATION

• The singularity map is constructed as a 
discretized grid of cells in the ϕ-θ plane.

• Each grid cell corresponds to a small 
region.

• The singularity status of each cell is 
determined by sampling points :

• Step size is determined by the cell size.

𝑆 = ቊ
0 𝑖𝑓 𝑎𝑛𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑓𝑟𝑒𝑒)



CONTROL ALGORITHM

• Step 1: Obtain the current manipulator position in Euler angles (𝜙ௌ , 𝜃ௌ).

• Step 2: Get the target position relative to the manipulator.

• Step 3: Choose a target solution (𝜙், 𝜃்) among all feasible ϕ-θ positions pointing to the target elevation, 
using one of two methods:

• Furthest-from-singularity method

• Closest-to-source method

𝜙், 𝜃் =arg max
∅, ఏ

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑝𝑜𝑖𝑛𝑡𝑠

(𝜙், 𝜃்)=arg min
∅, ఏ

∅, 𝜃 − 𝜙ௌ, 𝜃ௌ ଶ



CONTROL ALGORITHM (CONT.)

• Step 4: Calculate a feasible path using some grid search algorithm (Dijkstra, A*, Greedy, Beam Search, etc.)

• Step 5: Follow the path to the target’s cell using inverse kinematics, from one cell to the next, then move 
directly to the target,

Or:     

• Repeat (for tracking a moving target)

• At each control cycle k:

• Update the Platform’s current position (𝜙ௌ
, 𝜃ௌ

) 

• Update the target’s current position (𝜙்
, 𝜃்

) 

• Recalculate the path with an appropriate singularity map

• Coarse resolution for long trajectories.

• Fine resolution for refinements near the target.

• Move to the next cell or directly to the target



GRID SEARCH TRAJECTORIES



TRACKING



RANDOM LINEAR TARGET

• Tracking Time = 22sec

• Duration for which the point moves 
in a single random direction before 
potentially changing its direction =  
2sec

• Speed = 50m/sec

• Sampling Freq. = 24hz

• 𝑝 = 10, 0, 100  𝑚

Seed=42



RANDOM LINEAR TARGET TRACKING LOS



RANDOM LINEAR TARGET TRACKING ERROR



RANDOM LINEAR TARGET TRACKING ANIMATION
Unconstrained Feedback ControlGrid Search



RANDOM LINEAR TARGET TRACKING ANIMATION
Unconstrained Feedback ControlGrid Search



DISCUSSION



DISCUSSION – PROS & CONS

Pros:
• Robustness
• Efficiency
• High Success Rates

Cons:
• Pre-Training Overhead
• Non-Deterministic 

Behavior
• Reduced Maneuverability

Unconstrained Feedback ControlGrid SearchRL (Discrete Actions)

Pros:
• Deterministic
• No Pre-Training
• Safety & Reliability

Cons:
• Computational Toll 
• Path Optimality
• Smoothness
• Reduced Maneuverability

Pros:
• Simplicity 
• Shortest Trajectories
• Low Computational Cost
• High Maneuverability

Cons:
• Lack of Singularity 

Avoidance
• Limited Robustness
• Tracking Limitations



DISCUSSION - INSIGHTS AND FUTURE DIRECTIONS

• The reduced maneuverability in RL and Grid Search approaches is a trade-off for their safety and 
reliability.

• The unconstrained method excels in smooth and efficient motion but struggles with singularity 
avoidance at high elevation angles.

• The RL model, being a lightweight neural network, is well-suited for deployment on low-power 
hardware such as ASICs.

• The grid search approach requires CPU resources for real-time pathfinding and command conversion.

• The multi-resolution approach in Grid Search reduces computational costs, making its real-time 
performance comparable to RL inference.

• Hybrid approaches could leverage the strengths of the unconstrained method with RL or Grid Search to 
achieve optimal control.



RL DEMO EXPERIMENT

A2C TD3


